Top Quark Physics in LHC-D

PHYSICS AT THE TERASCALE

Telson + + Julizak Erschweid (Onder + - Occadege/Uniger/BOOKage - + Krimen (Kreden + + Criend) (Kreden + + Hersel) (Kreden + + Mersel) (Kreden + +

3rd Annual Workshop

11 - 13 November 2009 DESY, Hamburg Site

Program: • Physics Analysis: Theory and Experiment • Detector Development • R&D in Accelerator Physics • Grid Computing LHC-D Working Group Meetings

GEFÖRDERT VOM

für Bildung und Forschung

Helmholtz Alliance

Organising Committee: af Belmike, Ties Belnike, Tan Brock, Michaela Grimm, Wolfgang Hillert, Albert Koussen, Michael Kainer, Thomas Schömer-Sadeniue Amo Strässner, Marc Wenskat

www.terascale.de/alliance20

Frank-Peter Schilling

with M. Cristinziani (ATLAS), P. Uwer, W. Bernreuther (TH)

Terascale Alliance 3rd Annual Meeting DESY, 13/11/2009

• Why Top Quark Physics at LHC?

□ Precise SM measurements

- o Heaviest known elementary particle (large Yukawa coupling)
- o Top and W mass constrain Higgs mass
- o Unique window on bare quarks due to short lifetime
- □ A window to new physics
 - o New physics might couple preferentially to top
 - o Non-standard couplings
 - o New particles can produce / decay to top quarks
- □ In many new physics scenarios (e.g. SUSY) top is dominant BG
- Tool to understand / calibrate detector
 - o JES, b-eff.
- Early understanding of top physics @ LHC is cruical
- This talk: overview on Top Quark Physics activities in LHC-D
 - NOT a comprehensive summary of the field

Frank-Peter Schilling

Ttbar pair production and decay

Frank-Peter Schilling

Cross Sections at the LHC

	Cross Section [pb]					
Process	E(c.m.)=7 TeV		E(c.m.)=10 TeV		E(c.m.)=14 TeV	
Ttbar	187	(x20)	414+/-40 +/-	20 <mark>(x50)</mark>	908+/-83+/-3	0(x120)
Single-top s	1	(x1)	5+/- 0.5	(x5)	10.7 +/- 1.0	(x10)
Single-top t	65	(x30)	131+/- 7	(x60)	247 +/- 13	(x120)
Single-top tW	11	(x100)	29 +/- 3	(x290)	56 +/- 6	(x560)
QCD (LO, pt>80 GeV)	0.9*10^8		1.9*10^8		3.7*10^8	
W->I+nu (LO)	24.000		40.000		60.000	
Z->I+I (LO, m>50 GeV)	2.300		3.700		7.000	

- Huge increase in signal cross sections w.r.t. Tevatron (red numbers)
- Cross section reduction with respect to nominal 14 TeV (ttbar, t, tW)
 at 10 TeV, lose factor ~2 w.r.t. 14 TeV
 at 7 TeV, lose factor ~4 w.r.t. 14 TeV
- Expect 40.000 ttbar events in 2010 run (e.g. 200pb-1 @ 7 TeV)

Experimental Challenges

- Signal cross section increases by factor ~50 at 10 TeV w.r.t. Tevatron, so what's the problem?
 - □ The dominant backgrounds increase a lot as well
 - o Large phasespace for gluon emission at LHC energies
 - o W+ 4 jets rate goes up much more (x100) than inclusive W cross section (x10)
 - o Huge rate of QCD N-jet events, in which one jet may fake a lepton / has b-dec. lepton
- Good understanding of ~all physics objects required
 - □ Jets (jet energy scale)
 - □ Leptons (ID, momentum scale, isolation, efficiency and fake rate)
 - □ Missing ET (cleaning, scale, resolution)
 - B-tagging (efficiency and fake rate, applied to multi-jet environment)
 - Do all this in a data-driven way!
- Understand background-dominated control regions first
 - **E.g.** at low jet multiplicities
- Monte Carlo
 - □ Need to use advanced tools (MC@NLO, MADGRAPH, ALPGEN,...) CPU!
 - Tune simulations with early data

Frank-Peter Schilling

Parallel Session Overview

16:00->18:40 LHC-D Top: Parallel Session I (Convener: Werner Bernreuther (RWTH Aachen), Markus Cristinziani (Uni Bonn), Peter Uwer (Humboldt-Universität zu Berlin), Frank-Peter Schilling (KIT / University of Karlsruhe)) (Location: Lecture Hall)

ano ano	, (Leocaroni Leocaro nan)					
16:00	MS bar mass extraction of the top quark (20) Ulrich Langenfeld (H	U Berlin)			
16:20	W+jets background for ttbar (ATLAS) (20')	Sascha Mehlhase	(DESY)			
16:40	Ttbar cross section measurement in I+jets topological likelihoods (ATLAS) (20')	with Stefan Guindon (Goe Anna Henrichs (Go	ttingen) , ettingen)			
17:00	Ttbar spin correlations (CMS) (20')	Martina Davids (III. Phys. Intitut B, RWTH	Aachen)			
17:20	Report from Alliance Workshop: Fourth Gen	neration (20') Heiko Lacker (Humboldt University of	of Berlin)			
17:40	QCD radiation in ttbar events (CMS) (20)	Alexander Flossdorf	(DESY)			
18:00	Top for Calibration (CMS) (20')	Sebastian Naumann-Emme (Uni H	amburg)			
18:20	Top event reconstruction with KLfitter	Johannes Erdmann (Geora-Auaust-Universität Gött	inaen. II.			
	Markus Cristinziani (Uni Bonn), Peter Uwer (Humboldt-Universität zu Berlin), Frank-Peter Schilling (KIT / University of Karlsruhe)) (Location: Lecture Hall)					
	09:00 Matrix-Element analyses (ATLAS) (20) Desy)					
•	Topics discussed	op reconstruction with patterns in jet subs	structure (ATLAS)	Peter Kovesarki (PhD student)		
	Ttbar cross section	bar decays / boosted top (CMS) (20)	Thomas Peiffer	r (University of Karlsruhe)		
	Ton properties	nces in the ttbar invariant mass spectrum	(ATLAS) (20') Ma	arkus Mechtel (<i>Wuppertal</i>)		
		Coffee break				
		ss section at 10TeV (CMS) (20')	Jasmin Gruschke (U	Iniversität Karlsruhe / KIT)		
	New physics in M(ttbar)	om Alliance Workshop: Single Top (20)	Martin zur Nedden (Humbo	oldt-Universitaet zu Berlin)		
	□ And more	p (CMS) (20')	Jeannine Wagner-Kuh	r (University of Karlsruhe)		
	11.40 Stand der Studien zu Single-Top bei 10 TeV und 200 pb-1 (ATLAS) (20) Philipp Sturm (Wuppertal)					
	12:00 Discussion on Common Projects in LHC-D Top Group (30')					

Frank-Peter Schilling

Top Quark Physics in LHC-D

J. Gruschke (KIT)

- Muon+jets PAS TOP-09-003
- Electron+jets: PAS TOP-09-004
- Focus on early cross section measurement with first 20pb-1 of data
 - Robust selection (no MET, no btagging) for early data
 - Data driven backgrounds
 - Systematic uncertainties
- Event selection
 - Single lepton trigger
 - One isolated muon (Pt>20) or electron (Et>30)
 - □ >= 4 SisCone jets, Et>30 GeV

Jet multiplicity

172 signal and 108 bkg events.

Frank-Peter Schilling

J. Gruschke (KIT)

ABCD-Method:

- Divide into 4 phase-space regions (3 dominated by QCD)
- Estimate QCD contribution in the signal region via:

$$N_A = N_B \cdot \frac{N_C}{N_D}$$

Rellso Extrapolation Method:

 Side-band region fit to an isolation distribution (Rellso includes tracker and calorimeter information)

 Integral of extrapolated function as estimate for the QCD contribution

All methods yield ~50% uncertainty (OK if BG is small)

Frank-Peter Schilling

J. Gruschke (KIT)

Extract cross section via template fits to discriminating variable

Muon channel

Comparison of shapes:

Systematic errors for each 5k pseudo experiments performed

Muon+jets channel:

Source	Uncertainty [%]			
	Fit to $\eta(\mu)$	Fit to M3	Fit to M3'	
Statistical Uncertainty (20 pb^{-1})	17.7	16.3	11.5	
Jet Energy Scale	16.7	15.1	19	
$t\bar{t}$ MC Generator	1.9	14.9	14	
$t\bar{t}$ ISR/FSR	3.3	7.7	2	
W+jets Factorization scale	4.4	4.7	4	
W+jets Matching threshold	5.5	2.8	4	
Single Top Shape	0.1	0.8	1	
PDF Uncertainty	5.0	5.0	5.0	
Total Systematic Error	19.2	23.8	25.0	
Luminosity Error	10.0	10.0	10.0	

Result for 20pb-1:

Muon+jets

o 12-18% (stat.); 20-25% (syst.)

Electron+jets

o 23% (stat.); 20% (syst.)

Frank-Peter Schilling

lepton+jets cross section

- Studies towards I+jets cross section, using
 - □ >=4 cone jets, Et>40/40/40/20 GeV
 - □ MET>20 GeV
 - □ electron or muon, Pt>20 GeV
- Isolation improvements
 - Use relative isolation
 - Combine tracker and calo

S. Guindon (Goettingen)

 Cross section extraction using likelihood ratio

• Signal fraction from template fit to LR discriminant

Idea based on D. Stuart, V.Pavlunin Phys.Rev. D78 (2008) 035012 [arXiv:0806.2338]

- Exploit W+jets and ttbar topologies
 - Signal (ttbar): high n-jet, small |eta|
 - Background (W+jets): low n-jet, all |eta|
 - Extrapolate W+jets from low n-jet and large |eta| to high n-jet and central |eta|

Frank-Peter Schilling

Top Quark Physics in LHC-D

S. Mehlhase (DESY Zeuthen)

S. Mehlhase (DESY Zeuthen)

- However: must take signal and background overlap into account
- Modified method developed
- First results encouraging

MSbar determination of m(top)

- Work in collaboration with S. Moch, P. Uwer
 - Phys.Rev.D80 (2009) 054009 [arXiv:0906.5273]
- m(top) measured at Tevatron as "pole mass" (PYTHIA parameter)
- Here: extract m(top) in MSbar scheme by comparing sigma(ttbar) measured at Tevatron with theory predicion (approx. NNLO)

Result: $\overline{m} = 160.0^{+3.3}_{-3.2} \, \text{GeV}$

convert $\overline{\text{MS}}$ mass \overline{m} into pole mass m_t

Our Analysis: $m_t = 168.9^{+3.5}_{-3.4} \,\text{GeV}$

world average: $m_t = 173.1^{+1.3}_{-1.3} \text{ GeV}$

U. Langenfeld (HU Berlin)

Frank-Peter Schilling

Preparation for

- Top mass measurement
 - o Using template method
 - o Using matrix element method
- **W** helicity measurement
 - o Using template method

- Application of statistical tools
 - BAT (Bayesian Analysis Toolkit) [arXiv:0808.2552]
 - KLFitter (Kinematic Likelihood Fit) ATL-COM-PHYS-2009-551

A. Knue, J. Erdmann (Goettingen)

• m(top) using templates

Need more / parameterized templates ...

Frank-Peter Schilling

Ttbar Spin Correlations

- Spin configuration depends on production mechanism
- \bigcirc Top quarks decay before hadronising \Rightarrow spin information from decay products
- Sest top spin analyser: charged lepton from W decay ($\kappa_r = \pm 1$) \Rightarrow dilepton channel
- Observable for tt spin correlations: angular distribution of charged leptons:

$$\frac{1}{N} \frac{d^2 N}{d \cos \theta_{l^+}^* d \cos \theta_{l^-}^*} = \frac{1}{4} (1 - A)_{1} \kappa_2 \cos \theta_{l^+}^* \cos \theta_{l^-}^* + p_+ \cos \theta_{l^+}^* + p_- \cos \theta_{l^-}^*)$$

(θ_{l^+} : angle between p(l) in t rest frame and p(t) in tt pair rest frame)
(θ_{l^+} : $\theta_{$

Prediction for LHC: A \approx 0.326 (14 TeV, e. g. Hep-ph/0410197, Bernreuther et al.), $A \approx 0.315$ (10 TeV)

Frank-Peter Schilling

Top Quark Physics in LHC-D

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8 1.6 COS(0⁺)

Ttbar Spin Correlations

M. Davids (Aachen)

Lumi [fb⁻¹]

- Kinematic reconstruction (in dilepton channel)
- Angular distributions distorted due to selection cuts

• Fit basis histos plus background templates to data

• Outlook:

❑ Add further backgrounds, study systematics

Frank-Peter Schilling

New physics in M(ttbar)

- Several new physics scenarios predict heavy particles decaying into ttbar pairs
 - e.g. Axigluons, Technicolor Z', KK excitations of extra ED gravitons
- In all cases leads to distortion of M(ttbar) spectrum
- Tevatron has excluded narrow Z' for M<820 GeV
- Experimental challenges
 - At high mass, top decay products are boosted (close together)
 - o Leptons fail isolation requirement
 - o Jets merge with other jets / leptons
 - o B-tagging at high Pt difficult / impossible (dense tracks)

Frank-Peter Schilling

Boosted Top

T. Peiffer (KIT)

- Two recent CMS approvals with german contribution
 - Low-mass: PAS TOP-09-009 (Aachen)
 - □ High-mass: PAS EXO-09-008 (Karlsruhe)
- Scenario studied: 10 TeV, 100-200pb -1, narrow Z' resonance in muon plus jets channel
- Low mass scenario:

□ Similar topology as SM ttbar, >=4 jets

- High mass scenario:
 - Top quarks boosted, decay products closeby: jets merge (njet>=2), lepton not isolated
- Need event reconstruction to obtain m(ttbar)

Boosted Top

- Low mass scenario
 - Kinematic fit for jet assignment
- High mass scenario
 - □ Full reco not possible
 - Neutrino from MET, Wmass constraint
 - Assign jets such that top and tbar are backto-back
 - Data-driven BG estimates
 - Limits from template fits including systematics
 - Limits in pb range in one year of data taking

Frank-Peter Schilling

High pt top reco using substructure

 Pt correlation with hadronic top visible for pt>100 GeV

• Selection:

PHYSICS

- □ Wide jet, Pt>300 GeV
- □ Isol. Electron, Pt>50 GeV

hit clusters in calorimeter

- Reduce cone size
 - Find "split levels"
 - Define pt-ratio of 2 jets at first splitting

Frank-Peter Schilling

Interference Effects in m(ttbar)

Many models predict interference between signal and SM background

□ Affects m(ttbar) shape

Spin	color	parity $(1,\gamma_5)$	some examples	Interf.
0	0	(1,0)	SM, MSSM, 2HDM	×
0	0	(0,1)	MSSM, 2HDM	\checkmark
0	8	(1,0), (0,1)	techni- π^0	×
1	0	(SM,SM)	Ζ'	
1	0	$(1,0), (0,1), (1,\pm 1)$	vector	\checkmark
1	8	(1,0)	coloron, KK gluon	\checkmark
1	8	(0,1)	axigluon	
2	0	_	KK graviton	\checkmark

[Frederix, Maltoni: JHEP01(2009)047]

- Simulate detector by 4-vector smearing:
- Effect mostly washed out ...

M. Mechtel (Wuppertal)

• Example: pseudoscalar Higgs, 400 GeV, parton level

Single Top

u d /	s-channel	t-channel	- d - t - b	associated production		
	PRD 74, 114012 (2006); PRD 70, 114012 (2004); Nucl. Phys. B726, 109 (2005); JHEP 0910, 042 (2009)	Tevatron [pb] √s=1.96 TeV	LHC [pb √s=7 Te\) /	LHC [pb] √s=10 TeV	
	s-channel	0.88	1		5	
	t-channel	1.98	65		124	
	associated production	0.26	11		29	

Physics motivation:

- Direct measurement of |V_{tb}|²
- Test of Wtb coupling
- Search for new physics

(4th gen., H+, W' ...)

Frank-Peter Schilling

t-channel:

- Improved S/B ratio compared to Tevatron
- Most promising for re-discovery

Single Top in CMS

J. Wagner-Kuhr (KIT)

- Approved CMS analysis PAS TOP-09-005
 - t-channel, muonic W decay, 10 TeV, 200pb-1
- Event selection
 - □ 1 muon, Pt>20 GeV
 - ==2 jets, Et>30 GeV, |eta|<5.0</p>
 - ==1 b-tag, veto on second (loose) b
 - □ Mt(W)>50 GeV
- Yields S/B = 1 / 2.3

Use template fit to cos(theta*)[I,q]

• Sensitivity (incl. systematics):

Frank-Peter Schilling

Single Top in ATLAS

P. Sturm (Wuppertal)

- t-channel selection
 - □ 1 electron or muon, Pt>20 GeV
 - □ 2 or 3 jets, Et>30, |eta|<5.0
 - 1 b-tag, MET>20 GeV
- **Determine ttbar and W+jets BG** in 3-jet pretag sample using Neural Net

t-chan

₩+jets

Wt

- Measure cross section in 2-jet tagged sample using Neural Net
- **Study systematics**

Frank-Peter Schilling

QCD radiation effects in ttbar

A. Flossdorf (DESY)

• Impact of various parton shower models on Pt(ttbar) distribution

Frank-Peter Schilling

PHYSIC

Data-driven jet assignment

Frank-Peter Schilling

Other Topics

- Summaries talks from workshop on single top and fourth generation physics (Sept 2009, DESY)
 - Single top (M. Zur Nedden, HU Berlin) <u>https://indico.desy.de/getFile.py/access?contribId=90&sessionId=41</u> <u>&resId=0&materialId=slides&confId=2154</u>
 - 4th generation (H. Lacker, HU Berlin) <u>https://indico.desy.de/getFile.py/access?contribId=82&sessionId=36</u> <u>&resId=0&materialId=slides&confId=2154</u>

Discussion session on common projects in LHC-D TOP group
 At interface between theory and experiment
 Penomenological studies, NLO codes and tools, etc.

Conclusions

- 5th workshop of the LHC-D top group
 - □ Key measurements well covered by German ATLAS, CMS groups
 - □ Theory not well represented this time
 - Plan: strenghen common activities

<u>Ttbar physics program at the LHC</u>

- 900 GeV collisions
 - o None ;-)
- □ 20 (50) pb-1 @ 10 (7) TeV:
 - o "rediscover" top quark
 - o first ross section and mass measurements
- □ ~200 pb-1 @ 10 TeV:
 - o first statement on single top
 - o limits on new physics in m(ttbar) in 1-3 TeV range
- □ several fb-1:
 - o Precision measurements of top quark properties

Frank-Peter Schilling

Backup

TOPics discussed

Cross section measurements

- □ Cross section measurements at 10 TeV (J. Gruschke, KIT, CMS)
- □ Lepton+jets with Likelihood (S. Guindon, Goettingen, ATLAS)
- □ W+jets background (S. Mehlhase, DESY, ATLAS)
- Top properties
 - □ MSBAR mass extraction (U. Langenfeld, Berlin, Theory)
 - □ Spin Correlations (M. Davids, Aachen, CMS)
 - □ Mass and W-helicity (A. Knue, Goettingen, ATLAS)
- Ttbar resonances / boosted Top
 - □ High pt top reconstruction / jet substructure (P. Kovesarki, Bonn, ATLAS)
 - □ Boosted top (T. Peiffer, KIT, CMS)
 - □ Interferences in M(ttbar) (M. Mechtel, Wuppertal, ATLAS)

• Single top

- □ Single top in CMS (J. Wagner-Kuhr, KIT, CMS)
- □ Single top in ATLAS (P. Sturm, Wuppertal, ATLAS)
- □ Report from alliance WS: Single top (M. zur Nedden, HU Berlin, Gen)
- □ Report from alliance WS: Fourth generation (H. Lacker, HU Berlin, Gen)

• Other topics

- **QCD** radiation effects (A. Flossdorf, DESY, CMS)
- □ Top for calibration (S. Naumann-Emme, Hamburg, CMS)
- **U** Event reconstruction with Klfitter (J. Erdmann, Goettingen, ATLAS)
- Discussion session on common projects

Frank-Peter Schilling

Cross section in dilepton (CMS)

- Early measurement in 10pb-1 at 10 TeV (ee, mumu, emu) **PAS TOP-09-002**
- **Event selection**
 - Single lepton trigger
 - 2 leptons, opp. Charge, Pt>20 GeV
 - **Z**-veto in ee,mumu
 - >=2 jets, Et>30 GeV
 - □ MET> 20 (30) GeV
- **Result for 10pb-1**
 - Stat. error 15%
 - **Syst. Error 10%**

Data sample	e^+e^-	$\mu^+\mu^-$	$e^{\pm}\mu^{\mp}$
$t\bar{t} \to \ell\ell$	11.6 ± 0.2	13.2 ± 0.2	35.6 ± 0.4
other <i>tt</i>	0.21 ± 0.03	0.04 ± 0.01	0.46 ± 0.04
Single top	0.46 ± 0.03	0.56 ± 0.03	1.40 ± 0.06
WW/WZ/ZZ	0.26 ± 0.02	0.33 ± 0.03	0.71 ± 0.05
$DY \rightarrow \tau \tau + jets$	0.3 ± 0.1	0.3 ± 0.1	0.7 ± 0.2
$DY \rightarrow ee/\mu\mu + jets$	4.1 ± 0.4	5.3 ± 0.4	0.08 ± 0.05
W + jets	0.2 ± 0.1	< 0.1	0.3 ± 0.1
QCD	< 1	< 0.4	< 0.4
Total backgrounds	5.5 ± 0.4	6.6 ± 0.4	3.7 ± 0.2
Data driven fakes	1.1 ± 0.6	0.8 ± 0.4	2.5 ± 1.2
Data driven DY	4.0 ± 1.3	5.1 ± 1.6	

Variations studied Use track-jets and no MET Use b-tagging **Track-corrected MET**

Frank-Peter Schilling