

Helmholtz Alliance

Global fits of SUSY parameters

Peter Wienemann University of Bonn

3rd Annual Workshop of the Helmholtz Alliance "Physics at the Terascale" November 11-13, 2009 DESY

Parameter fits: A brief history

Much work went into SM fits:

- very precise measurements
- equally precise theoretical calculations (→ radiative corrections)
- $\rightarrow \mathbf{G}_{\mathsf{F}}, \, \alpha_{\mathsf{s}}^{}(\mathsf{M}_{\mathsf{Z}}^{\ 2}), \, \Delta \alpha_{\mathsf{em}}^{^{(5)}}(\mathsf{M}_{\mathsf{Z}}^{\ 2}), \, \mathsf{m}_{\mathsf{Z}}, \\ \mathbf{m}_{\mathsf{t}}^{}, \, \mathsf{m}_{\mathsf{H}}^{}$

Similarly, need to fit parameters of more complex extended theory if BSM physics is found

Supersymmetry

Despite of tremendous success, SM also exhibits shortcomings:

- Instability of the Higgs boson mass
- No dark matter candidate
- Unification of gauge couplings impossible
- ...

Remedy could be provided by introduction of single additional symmetry:

Bosons
$$\leftrightarrow$$
 Fermions (Δ s=1/2)

Entails introduction of additional particles to SM. Since still undiscovered, SUSY must be broken.

To cure shortcomings of SM, SUSY particles must be light (~ O(1) TeV)

 \rightarrow LHC and ILC will decide about fate of SUSY

Challenges for parameter fits

Stumbling block: observables ≠ parameters

```
Observables: masses, asymmetries, rates, ...
Parameters: \alpha_s, tan \beta, M_1, A_{\tau}, ...
```

Establish mapping

parameters \rightarrow observables

is "easy".

But constructing mapping

observables \rightarrow parameters

is cumbersome (\rightarrow lots of CO₂).

SUSY/BSM fit programs

- Fittino (P. Bechtle, K. Desch, P. Wienemann, *et al.*) http://www-flc.desy.de/fittino
- SFitter (R. Lafaye, T. Plehn, D. Zerwas, et al.)
- Mastercode (O. Buchmüller, R. Cavanaugh, A. De Roeck, S. Heinemeyer, G. Isidori, F. Ronga, G. Weiglein, *et al.*)
- (Gfitter) (H. Flächer, M. Goebel, J. Haller, A. Höcker, K. Mönig, J. Stelzer, *et al.*) http://gfitter.desy.de

Can look for SUSY effects in already available data from LEP, Tevatron, SLC, B/K physics, $(g-2)_{u}$ and astrophysics.

"Low energy" precision observables exhibit sensitivity to SUSY parameters, in particular

LE: mSUGRA parameters

Bechtle, Desch, Uhlenbrock, Wienemann

Fit of mSUGRA parameters to 35 LE measurements:

LE data favours light SUSY (consistent with findings by MASTERCODE group)

LE: Impact of individual observables

Bechtle, Desch, Uhlenbrock, Wienemann

Fits with all observables:

- Preferred region rather stable
- (g-2) and to lesser extent Ωh^2 most constraining

LE: Predicted mass spectra

mSUGRA, sign(μ)>0:

GMSB, sign(μ)>0, N₅ = 2:

Bechtle, Desch, Uhlenbrock, Wienemann mSUGRA, sign(μ)<0:

Light SUSY particles favoured

LE: Comparison with LHC potential

Bechtle, Desch, Uhlenbrock, Wienemann Buchmüller, et al.

Good prospects for early BSM hints at LHC

LE: Predicted LSP and NLSP masses

Bechtle, Desch, Uhlenbrock, Wienemann

- DM relic density prefers co-annihilation region
- Seeing excess might be easy, measuring certain processes might be more difficult (soft taus!)

Projection to LHC

Fit result of mSUGRA fit to LE data accidentally close to experimentally well studied SUSY benchmark point:

				SPS1a values		
aneta	13.2	\pm	7.2	10		
$M_{1/2}~({ m GeV})$	331.5	\pm	86.6	250		
$M_0~({ m GeV})$	76.2		$^{+79.2}_{-29.1}$	100		
$A_0 ~({ m GeV})$	383.8	\pm	647	-100		

\rightarrow dare projection to LHC era based on SPS1a studies

Caveat emptor: • No decay chain ambiguities considered

- Uncertainties on theoretical calculations (mostly) not considered
- Mostly no information on LHC production rates

LHC: mSUGRA parameters vs. luminosity

Bechtle, Desch, Uhlenbrock, Wienemann

Precision on mSUGRA parameters for 1, 10 and 300 fb⁻¹:

LHC: sign(µ)

Bechtle, Desch, Uhlenbrock, Wienemann

Perform fits to toy datasets generated by smearing observables within uncertainties

 χ^2 correlations for fits with sign(μ)>0 and sign(μ)<0 to same toy dataset:

Any discrete "degree of freedom" (parameter, ambiguity, ...) can be treated this way

LE+LHC: Mass spectrum

Bechtle, Desch, Uhlenbrock, Wienemann

SUSY mass spectra derived from LE and LHC (1 fb⁻¹ and 300 fb⁻¹) observables assuming mSUGRA model:

LE+LHC+ILC: Mass spectrum

Bechtle, Desch, Uhlenbrock, Wienemann

SUSY mass spectra derived from LE and LHC (300 fb⁻¹) and optionally ILC observables assuming MSSM18 model:

Next steps: Decay chain ambiguities at LHC

Certain final state at LHC cannot be unambiguously assigned to single decay chain

First steps started to include all these ambiguities in parameter analysis:

Next steps: LHC production rates

Krämer, Lindert, O'Leary

Conventional calculation of production rates at LHC too slow.

Investigated way out:

- Prospino look-up table (only 2 parameters: squark and gluino mass)
- Calculation of BRs by SPheno/SDecay
- Parametrised detector response

LO cross section [pb] for pp > squarkL/R gluino using Prospino2.1

Fittino workshop

Held on October 29-30, 2009 at DESY with 17+2 participants

Discussion of present and future work:

- Fitting algorithm speed-ups (Dresden, DESY)
- Inclusion of SUSY exclusion limits from Tevatron (Mainz, ...)
- Inclusion of indirect dark matter search results (Hamburg)
- Systematic comparison of different RGE codes (Göttingen)
- Inclusion of uncertainties/correlations of theory predictions (Würzburg, DESY, Heidelberg, ...)
- Inclusion of HiggsBounds (Freiburg)
- Discrimination of NMSSM and MSSM (DESY)
- Fitting studies within ATLAS and CMS (DESY/Hamburg)
- SPheno developments (Würzburg)
- Discrimination of MSSM and cE6MSSM (Dresden)
- and as seen: fitting rates and shapes at LHC (Aachen) and decay chain ambiguities (DESY)

very successful, plan to apply for Helmholtz Alliance working group

Summary

- Constraining SUSY parameter space will be essential task in upcoming years (both if ∃ SUSY and if ∄ SUSY)
- Several powerful SUSY fitting frameworks developed during recent years
- Obtained fascinating results with them:
 - Light SUSY preferred by LE precision data
 - Demonstration of possible LHC and ILC potential
- Present parameter analyses do not yet fully exploit possible LHC measurements (rates, ...). Also, full consideration of decay chain ambiguities and theory uncertainties still owing.
- But Alliance-wide joint effort by experimentalists and theorists has started to address open issues
- Many interesting new results can be expected soon ...

Peter Wienemann: Global fits of SUSY parameters

BACKUP

LE observables

Observable	Experimental	Uncertaint	y	Exp. Reference	
	Value	stat	syst		
$\mathcal{B}(B \to s\gamma)/\mathcal{B}(B \to s\gamma)_{SM}$	1.117	0.076	0.096	[47]	
$\mathcal{B}(B_s \rightarrow \mu \mu)$	$< 4.7 \times 10^{-8}$			[47]	
$\mathcal{B}(B_d \rightarrow \ell \ell)$	$< 2.3 \times 10^{-8}$			[47]	
$\mathcal{B}(B \to \tau \nu) / \mathcal{B}(B \to \tau \nu)_{\rm SM}$	1.15	0.40		[48]	
$\mathcal{B}(B_s \to X_s \ell \ell) / \mathcal{B}(B_s \to X_s \ell \ell)_{\rm SM}$	0.99	0.32		[47]	
$\Delta m_{B_s} / \Delta m_{B_s}^{SM}$	1.11	0.01	0.32	[49]	
$\frac{\Delta m_{B_s} / \Delta m_{B_s}^{SM}}{\Delta m_{B_d} / \Delta m_{B_s}^{SM}}$	1.09	0.01	0.16	[47,49]	
$\Delta \epsilon_K / \Delta \epsilon_K^{SM}$	0.92	0.14		[49]	
$\mathcal{B}(K \to \mu \nu) / \mathcal{B}(K \to \mu \nu)_{SM}$	1.008	0.014		[50]	
$\mathcal{B}(K \rightarrow \pi \nu \bar{\nu}) / \mathcal{B}(K \rightarrow \pi \nu \bar{\nu})_{SM}$	< 4.5			[51]	
$a_{\mu}^{exp} - a_{\mu}^{SM}$	30.2×10^{-10}	8.8×10^{-10}	2.0×10^{-10}	[52, 53]	
$\sin^2 \theta_{\text{eff}}$	0.2324	0.0012		[46]	
Γ_Z	$2.4952 {\rm GeV}$	$0.0023 { m GeV}$	$0.001 \mathrm{GeV}$	[46]	
R_{I}	20.767	0.025		[46]	
R_b	0.21629	0.00066		46	
R _c	0.1721	0.003		[46]	
$A_{\rm fb}(b)$	0.0992	0.0016		[46]	
$A_{\rm fb}(c)$	0.0707	0.0035		[46]	
A_b	0.923	0.020		[46]	
A_c	0.670	0.027		[46]	
A_{I}	0.1513	0.0021		[46]	
A_{τ}	0.1465	0.0032		[46]	
$A_{\rm fb}(l)$	0.01714	0.00095		[46]	
$\sigma_{\rm had}$	41.540 nb	0.037 nb		[46]	
m_h	$> 114.4 {\rm GeV}$		$3.0 \mathrm{GeV}$	[54, 55, 56]	
$\Omega_{\rm CDM} h^2$	0.1099	0.0062	0.012	[57]	
$1/\alpha_{em}$	127.925	0.016		[58]	
G_F	$1.16637 \times 10^{-5} \mathrm{GeV}^{-2}$	$0.00001 \times 10^{-5} \mathrm{GeV}^{-2}$		[58]	
α_s	0.1176	0.0020		[58]	
m_Z	91.1875 GeV	$0.0021 {\rm GeV}$		[46]	
m_W	$80.399 \mathrm{GeV}$	$0.025 { m GeV}$	$0.010 \mathrm{GeV}$	[58]	
m_b	$4.20 \mathrm{GeV}$	$0.17 { m GeV}$		[58]	
m_t	172.4 GeV	$1.2 \mathrm{GeV}$		59	
$m_{ au}$	$1.77684 { m GeV}$	$0.00017 { m GeV}$		[58]	
mc	1.27 GeV	$0.11 \mathrm{GeV}$		[46]	

LHC observables

Observable	Nominal	Uncertainty							
	Value	$1 {\rm fb}^{-1}$	$10 \ {\rm fb}^{-1}$	300 fb^{-1}	LES_1	$LES_{10,300}$	JES_1	$JES_{10,300}$	syst.
m_h	109.6		1.4	0.1		0.1			
m_t	172.4	1.1	0.05	0.01			1.5	1.0	
$m_{\tilde{\chi}_1^{\pm}}$	180.2			11.4				1.8	
$\sqrt{m_{\tilde{\ell}_L}^2 - 2m_{\tilde{\chi}_1^0}^2}$	148.8			1.7		0.1			6.0
$m_{\tilde{g}} - m_{\tilde{\chi}_{1}^{0}}$	507.7		13.7	2.5				5.1	10.0
$\sqrt{m_{\tilde{q}_R}^2 - 2m_{\tilde{\chi}_1^0}^2}$	531.0	19.6	6.2	1.1			22.7	4.5	10.0
$m_{\tilde{g}} - m_{\tilde{b}_1}$	88.7			1.5				0.9	
$m_{\tilde{g}} - m_{\tilde{b}_2}$	56.8			2.5				0.6	
$m_{\ell\ell}^{\max}(m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}, m_{\tilde{\ell}_R})$	80.4	1.7	0.5	0.03	0.16	0.08			
$m_{\ell\ell}^{\max}(m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{4}^{0}}, m_{\tilde{\ell}_{L}})$	280.6		12.6	2.3		0.28			
$m_{\tau \tau}^{\max}(m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}, m_{\tilde{\tau}_1})$	83.4	12.6	4.0	0.73			4.2	0.8	5.7
$m_{\ell\ell q}^{\max}(m_{\tilde{\chi}_1^0}, m_{\tilde{q}_L}, m_{\tilde{\chi}_2^0})$	452.1	13.9	4.2	1.4			22.7	4.5	
$m_{\ell q}^{\text{low}}(m_{\tilde{\ell}_R}, m_{\tilde{q}_L}, m_{\tilde{\chi}_2^0})$	318.6	7.6	3.5	0.9			16.2	3.2	
$m_{\ell q}^{\text{high}}(m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{2}^{0}}, m_{\tilde{\ell}_{R}}, m_{\tilde{q}_{L}})$	396.0	5.2	4.5	1.0			19.9	4.0	
$m_{\ell \ell q}^{\text{thres}}(m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{2}^{0}}, m_{\tilde{\ell}_{R}}, m_{\tilde{q}_{L}})$	215.6	26.5	4.8	1.6			10.8	2.2	
$m_{\ell\ell b}^{\text{thres}}(m_{\tilde{\chi}_{1}^{0}}, m_{\tilde{\chi}_{2}^{0}}, m_{\tilde{\ell}_{R}}, m_{\tilde{b}_{1}})$	195.9		19.7	3.6				2.0	
$m_{tb}^{w}(m_{t}, m_{\tilde{t}_{1}}, m_{\tilde{\chi}_{1}^{\pm}}, m_{\tilde{g}}, m_{\tilde{b}_{1}})$	359.5	43.0	13.6	2.5			18.0	3.6	
$\frac{\mathcal{B}(\tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{R} \ell) \times \mathcal{B}(\tilde{\ell}_{R} \rightarrow \tilde{\chi}_{1}^{0} \ell)}{\mathcal{B}(\tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau}_{1} \tau) \times \mathcal{B}(\tilde{\tau}_{1} \rightarrow \tilde{\chi}_{1}^{0} \tau)}$	0.076	0.009	0.003	0.001					0.008
$\frac{\mathcal{B}(\bar{g} \rightarrow \bar{b}_2 b) \times \mathcal{B}(\bar{b}_2 \rightarrow \bar{\chi}_2^0 b)}{\mathcal{B}(\bar{g} \rightarrow \bar{b}_1 b) \times \mathcal{B}(\bar{b}_1 \rightarrow \bar{\chi}_2^0 b)}$	0.168			0.078					