Higgs Physics Summary

Milada Margarete Mühlleitner ITP Karlsruhe (KIT)

Physics at the Terascale Helmholtz Alliance November, 11-13, 2009

DESY, Hamburg

Outline

Higher order calculations - Higgs production and bkg

- * 2 talks NNLO m_t effects on gg-fusion (Ozeren/Rogal)
- * NLO QCD to $pp \rightarrow ttbb$ (Worek)
- * 1-loop MSSM to WBF (Palmer)
- * EW & b-quark contrs to H+jet (Brein)
- * Pseudoscalar decays to WW/ZZ (Wiebusch)

• Experimental studies

- * Higgs boson cxns (Warsinsky)
- * MSSM Higgs associated w/ $\phi \rightarrow \mu \mu$ (Weber)
- * WH, $H \rightarrow bb$ at large p_T (Weiser)
- * WBF in Pythia and Herwig (Hackstein)

Computer programs

* HiggsBounds (Williams)

More on theory calculations

* 2-loop $H \rightarrow bb$ (Reißer)

* 3-loop Higgs mass corrections (Kant)

The Higgs mechanism:

SM Higgs
Sector - J
Mass
Constraints

	•
$\Lambda=1$ TeV : $\Lambda_{GUT}=10^{16}$ GeV.	Triviality Vacuum stability
<u>ы</u>	$\downarrow \downarrow$
55 GeV $\lesssim M_H$; .30 GeV $\lesssim M_H$;	upper bound lower bound
≈ 700 GeV≈ 190 GeV	Cabibbo,;Sher; Lindner;Hasenfratz Lüscher, Weisz; Hambye,;
	4 - - - -

SM Higgs Sector - Mass Constraints

M.M. Mühlleitner, November 13, 2009, Terascale 2009

SM Higgs Sector - Mass Constraints

M.M. Mühlleitner, November 13, 2009, Terascale 2009

Tevatron Exclusion

MSSM Higgs sector – supersymmetry & anomaly free theory \Rightarrow 2 complex Higgs doublets

Non-minimal SUSY extensions

 $M_{A,H,H\pm}$

S

 $\mathcal{O}(v)...1 \text{ TeV}$

Zhang et al;Brignole et al;...

Most general SUSY with arbitrary matter content and gauge coupling unification at 10^{17} GeV:

 $M_h \lesssim 200 \; {
m GeV} \,$ Espinosa,Quiros

E.g. NMSSM

 $M_h^{
m NMSSM} \lesssim 142~{
m GeV}$ Ellwanger,Hugonie

MSSM Higgs Mass Limits

 \triangleright Direct Search at LEP: $e^+e^- \rightarrow Z + h/H, A + h/H, \nu_e \bar{\nu}_e + h/H$

M.M. Mühlleitner, November 13, 2009, Terascale 2009

SM Higgs Boson Produktion at the LHC

SM Higgs Boson Search at the LHC

CMS

M.M. Mühlleitner, November 13, 2009, Terascale 2009

Accuracy: $\delta M_H/M_H \sim 10^{-3}$

یں 600 M_A,GeV/c²

MSSM Higgs Boson Searchoat 200e Gool 400

10

t → Wb → jjb → Wb → lv¦b C

Stop mix: $A_t = Z M_{SUSY}$

ATLAS

CMS

ILC SM Higgs Boson Production

Kemal Ozeren	NNLO Higgs production via gluon fusion with finite top mass
Mikhail Rogal	Beyond the heavy top limit in the partonic Higgs production at the LHC

Top mass effects at NNLO

Kemal Ozeren (with R. Harlander) Mikhail Rogal (with M. Steinhauser, A. Pak)

QCD corrections huge - $\mathcal{O}(100\%)$

NLO (HIGLU) NLO (effective theory)

Dawson

Spira, Djouadi, Graudenz, Zerwas

Harlander, Kilgore

Anastasiou, Melnikov;

Ravindran, Smith, van Neerven

NNLO (effective theory)

Electroweak

Actis, Passarino, Sturm, Uccirati

Mixed QCD-Electroweak

Anastasiou, Boughezal, Petriello

NNLO+NNLL - $\mathcal{O}(\%)$

Catani, deFlorian, Grazzini, Nason

N³LO threshold enhanced corrections

Ravindran;Kidonakis;Idilbi,Ju,Yuan Moch, Vogt; Laenen, Magnea

Ahrens, Becher, Neubert, Yang

Top mass effects at NNLO

Kemal Ozeren (with R. Harlander) Mikhail Rogal (with M. Steinhauser, A. Pak)

- How accurate is the effective theory at NNLO? \Rightarrow
- Perform an asymptotic expansion in $rac{1}{m_t}$

$$\sigma = \sum_{n} \left(\frac{m_{H}^{2}}{4m_{t}^{2}}\right)^{n} \sigma_{n}$$

* first term $\sigma_0 = eff$. theory result st first non-leading $1/m_t$ term at NLO known <code>Dawson,Kauffman</code>

• Small $x = m_H^2/s$: approach breaks down

Match onto the known exact leading small-x result (gg) Marzani, Ball, DelDuca, Forte, Vicini

M.M. Mühlleitner, November 13, 2009, Terascale 2009

NLO QCD corrections to $pp \rightarrow ttbb$

Malgorzata Worek (with Bevilacqua, Czakon, Papadopoulos, Pittau)

Motivation

- * important bkg to ttH production with $H \rightarrow b\bar{b}$
- * analyses with realistic bkgs: signal significance jeopardized if bkgs from ttbb, tt+ jets not controlled very well
- **NLO 2** \rightarrow 4 particle process at current technical frontier

• Fully automatic calculation

based on HELAC-PHEGAS, HELAC-1LOOP, CUTTOOLS, ONELOOP, HELAC-DIPOLES

• Result

- * demonstrate power of system in realistic computation with 6 external legs and massive partons
- * Agreement with Feynman diagramatic calculation by Bredenstein, Denner, Dittmaier, Pozzorini

 \ast K-factor is large and positive, K=1.77

 \ast Scale dependence reduced from 70% at LO to 33% at NLO

Malgorzata Worek (with Bevilacqua, Czakon, Papadopoulos, Pittau)

NLO QCD corrections to $pp \rightarrow ttbb$

1-loop MSSM corrections to Higgs production in WBF

Sophy Palmer (with T.Figy,G.Weiglein)

Weak boson fusion: second largest SM Higgs production process at LHC

$$q+q \rightarrow q+h-H+q$$

 $W, Z, Z, ---H, h$

• Status

and implemented in MC programs NLO QCD corrections and full SM 1-loop correction calculated

Estimation of $\mathcal{O}(\alpha^3 \alpha_S^2)$ contributions

SUSY QCD and SUSY QCD&EW corrections known

Loop interference effects calculated

Han, Valencia, Willenbrock Figy, Oleari, Zeppenfeld; Ciccolini, Denner, Dittmaier

Vollinga

Djouadi, Spira; Hollik, Plehn, Rauch, Rzehak

Andersen, Binoth, Heinrich, Smillie; Bredenstein, Hagiwara, Jäger

1-loop MSSM corrections to Higgs production in WBF

Sophy Palmer (with T.Figy,G.Weiglein)

• VBFNLO public MC program:

Arnold, Bahr, Bozzi, Campanario, Englert, Figy, Greiner, Hackstein, Hankele, Jäger, Klamke, Kubocz, Oleari, Plätzer, Prestel, Worek, Zeppenfeld

- ightarrow predictions & distributions for WBF in the SM
- \rightarrow NLO SM QCD corrections included

• New Corrections to VBFNLO

- Full 1-loop SM EW corrections
- complex) MSSM: all SM-type corrections, dominant SUSY corrections

• EW corrs typically $\mathcal{O}(5\%)$, can be greater than $\mathcal{O}(10\%)$ in non-decoupling regime

1-loop MSSM corrections to Higgs production in WBF

Sophy Palmer (with T.Figy,G.Weiglein)

Electroweak and Bottom Quark Contributions to Higgs+Jet Production

Oliver Brein

- Motivation Low Higgs mass region difficult
- \ast study Higgs events w/ high- p_T hadronic jet
- st advantage: richer kinematical structure compared to inclusive production (ightarrow refined cuts)
- * disadvantage: lower rate than inclusive production
- LO Contributions to Higgs+ Jet
- o finite quark mass effects
- EW loop effects
- o 5-flavour scheme effect

Pseudoscalar Higgs Decays into Electroweak Gauge Bosons

Martin Wiebusch (with W.Bernreuther, P.Gonzalez)

Motivation

- Higgs $\rightarrow WW/ZZ \rightsquigarrow$ very clean signals
- The Higgs CP eigenvalue of the Higgs can be determined in these decay modes

Pseudoscalar Higgs

- Models without Higgs sector CP violation: no tree-level couplings between pseudoscalar Higgses and gauge bosons
- AVV' couplings must be induced trough fermion loops.
- BRs usually small
- But: Higgs-fermion couplings could be large
- Investigated process $\sigma(pp \rightarrow \phi \rightarrow VV')$ in the narrow width approximation for 2HDM, MSSM, 2HDM+4th generation

M.M. Mühlleitner, November 13, 2009, Terascale 2009

Higgs boson cross sections

Markus Warsinsky

Motivation

- * LHC initially not much sensitivity to Higgs boson(s)
- * But for some parameter space regions, especially MSSM at high aneta, early exclusion potential
- * Proper exclusion of a model: also theory uncertainties needed
- * Experimentalists should try to understand, what are the "state of the art" calculations, not only take some tool giving numbers
- MSSM at large $\tan\beta$: Φbb coupling \uparrow
- * b-associated production becomes important
- * modification of gluon gluon fusion

Search for neutral MSSM Higgs bosons $h/H/A \rightarrow \mu\mu$ @ 1 fb⁻¹

Hendrik Weber (with Anagnostou, Pandoulas, Perieanu, Ostaptschouk)

Signal

Signature in the detector

- *~2 isolated muons with high p_T
- *~2~b-jets with low p_T
- * low missing transverse energy
- Studied backgrounds Drell-Yan Irreducible Drell-Yan top pairs

Potential @ 1 fb⁻¹

- * Tevatron exclusion limits significantly improved
- * Discovery: needs higher statisitics

The Channel WH, $H \rightarrow bb$ at Large Transverse Momenta in ATLAS

Christian Weiser (with G.Piacquadio)

- Motivation Low mass Higgs region challenging for discovery ~--Additional information welcome!
- **Channel** WH, $H \rightarrow bb$: very difficult: S/B = 1.3 %
- Idea of J.Butterworth: select events in which $p_T(H/W) > 200$ GeV \sim *b*-quarks in one "fat" jet \Rightarrow strong reduction of bkgs + better acceptance

$$\int \mathcal{L} = 30 \, ext{fb}^{-1}$$
: $rac{S}{\sqrt{B}} = 3.0 \pm 0.3$ $S/B pprox 2/3$

Vector Boson Fusion Higgs in Pythia and Herwig++

Christoph Hackstein (with Krauss, Quast, Zeise, Zeppenfeld)

Higgs activities in Karlsruhe

- * Comparisons of different generators for VBF signal and bkgs, H o WW, H o au au
- * $Z \rightarrow \tau \tau$ bkg modelling w/ hybrid events
- * Full production of boson pair + jet samples for the VBF Higgs group
- Vector Boson Fusion 2 hard jets with a big gap between them \rightsquigarrow different generators should be compared for signal and bkgs important to investigate gap after parton shower, hadronization, underlying event

massive partons (top) handled differently by the different shower models

Pythia and Herwig++ differ strongly in the description of jet activity

Central Jet Veto

veto events with hard central jets

plot for $M_H = 120 \text{ GeV}$

Vector Boson Fusion Higgs in Pythia and Herwig++

Christoph Hackstein (with Krauss,Quast,Zeise,Zeppenfeld)

Karina Williams (with Brein, Bechtle, Heinemeyer, Weiglein)

- Past and present collider Higgs searches: Restrictions on models.
- Model-dependent limits

Model-independent limits

120 2,

	Which Higgs?
UnHiggs	Private Higgs
${\cal G}$ augephobic ${\cal H}$ iggs	Intermediate Higgs Jim Higgs
Composite Higgs	Fat Higgs Higgsleee
Higgs	Portal Higgs
Gauge	Twin Higgs Lone Higgs
Simplest	Higgs Phantom Higgs
M M Miihlleitner November 13 2000	9 Terascale 2009

HiggsBounds

Karina Williams (with Brein, Bechtle, Heinemeyer, Weiglein)

- Is my favourite model excluded?
- HiggsBounds (Fortran code):

by Higgs searches at LEP and Tevatron Determines whether a parameter point in a particular model has been excluded at 95% CL

\Rightarrow Model excluded.

- User provides: Higgs masses, $\Gamma_{
 m tot}$, normalised effective couplings squared, $BR(h_j o h_i h_i)$ in particular model
- Webpage: http://www.ippp.dur.ac.uk/HiggsBounds

HiggsBounds 1.2.0 results

Karina Williams (Bonn)

HiggsBounds

www.ippp.dur.ac.uk/HiggsBounds

うへへ 18 / 24

▼ ▲ |||||

цц

Low Energy Theorem in SUSY QCD at 2-loop for $h \to b \bar{b}$

Christoph Reißer (with L.Mihaila)

Motivation $Hb\bar{b}$

coupling essential for various physical processes windows for new physics through loop effects

Effective theory approach heavy particles "integrated out"

Full Theory: (SUSY) QCD $\xrightarrow{m_i \to \infty}$ Effective Theory: 5-flavor QCD

- * effective Lagrangian containing Higgs bosons, light fermions, gluons
- * heavy particle loop effects encoded in coefficients of EFT operators

QCD: top o SQCD: top, squarks, gluino

Low Energy Theorem in SUSY QCD at 2-loop for $h o b \overline{b}$

Christoph Reißer (with L.Mihaila)

• Motivation $Hb\bar{b}$

coupling essential for various physical processes windows for new physics through loop effects

Effective theory approach heavy particles "integrated out"

effective Lagrangian (SM)

$$\mathcal{L}_{ ext{eff}} = -rac{H^0}{v^0}\sum_{i=1}^5 C_i^0 \mathcal{O}_i'$$

Low Energy Theorem in SUSY QCD at 2-loop for $h \to b ar{b}$

Christoph Reißer (with L.Mihaila)

• Motivation $Hb\bar{b}$

coupling essential for various physical processes windows for new physics through loop effects

Effective theory approach heavy particles "integrated out"

effective Lagrangian (SM)

$$\mathcal{L}_{ ext{eff}} = -rac{H^0}{v^0}\sum_{i=1}^5 C_i^0 \mathcal{O}_i'$$

- Decoupling relations for strong coupling, light quark wave function and mass
- Renormalization within EFT
- Matching effective theory to the full theory

Low Energy Theorem in SUSY QCD at 2-loop for $h o b ar{b}$

Christoph Reißer (with L.Mihaila)

Matching effective theory to the full theory

- \triangleright EFT: tree level diagrams generated by operators ${\cal O}_2,~{\cal O}_3$
- ▷ Full theory diagrams:

Low-energy theorem for Higgs interactions Higgs coupling \sim heavy particle masses

• Work in progress: SUSY-QCD 2-loop corrections $\mathcal{O}(1\%)$

Three-loop Corrections to the Mass of the Light Higgs Boson in the MSSM

Philipp Kant (with R.Harlander, L.Mihaila, M.Steinhauser)

- **Motivation** experiment: $\delta M_h pprox 100-200$ MeV for light Higgs at LHC Need to match this precision!
- Approach to calculation:
- ▷ full 3-loop calculation not feasible
- \ast effective potential approximation $(p^2=0)$
- * restrict to t and \tilde{t} loops
- * virtual particles: $t, \tilde{t}, g, \tilde{g}, q, \tilde{q}$
- ▷ Integrals not feasible for arbitrary masses
- * assume fixed hierarchies among superpartner masses
- * asymptotic expansions ~~ one-scale integrals

Reduced Scale Dependence

• 3-loop calculation of M_h : effect of \sim 500 MeV \rightsquigarrow cannot be neglected

Th	e Stan	dard N	Nodel	of Particle Ph	nysics
Symmetry group $SU(3)$ ×	$SU(2)_L$	$_{_{\star}} imes U(1)$	Y		
I Particle Content		Matter	particle		Interaction particles:
	d u	s c	t	} Quarks	γ g
<	$ u_e $		7 ^V ₇	} Leptons	
	1.	2.	సా	Family	
II Fundamental Forces	Electr	omagnet	tic Ph	noton	
	Stron	Ωd	G	uon	
<	Weak		W_{i}		
III Higgs mechanism	Masses of	f the fun	ıdament	al particles	?
M.M. Mühlleitner, November 13, 200)9, Terascale	e 2009			

Π	e Standard Mc	odel of Particle Ph	iysics
Symmetry group $SU(3)$ ×	$SU(2)_L imes U(1)_Y$		
I Particle Content	Matter pa	articles:	Interaction particles:
	$egin{array}{c} u & c \ d & s \end{array}$	$\binom{t}{b}$ Quarks	γ
<	$egin{array}{ccc} u_e & u_\mu & e & \mu & \end{array}$	$\left. egin{smallmatrix} u_{ au} \\ \tau \end{bmatrix}$ Leptons	W^{\pm}
	$1. \qquad 2.$	3. Family	
II Fundamental Forces	Electromagnetic	Photon	
	Strong	Gluon	
<	Weak	W,Z	
III Higgs mechanism	Masses of the funda	amental particles	
M.M. Mühlleitner, November 13, 200)9, Terascale 2009		