Search for SUSY using Dilepton Events 3rd Annual Workshop of the Helmholtz Alliance "Physics at the Terascale"

Daniel Sprenger, Matthias Edelhoff, Lutz Feld, Niklas Mohr

1. Physikalisches Institut B RWTH Aachen University

12.11.2009

SPONSORED BY THE

Federal Ministry of Education and Research

Contents

Inclusive SUSY search using

• same-sign di-lepton* events (D. Sprenger, work in progress)

- opposite-sign di-lepton* events (N. Mohr)
- *) selecting electrons and muons

Same-sign Lepton Analysis

Same-sign lepton analysis

- SUSY discovery analysis
- Benchmark point LM0 (MSSM, mSUGRA parametrization)
- Look for events with at least 2 same-sign leptons in final state
- Pure counting experiment
- Low SM background

LM0 parameters

 $\begin{array}{l} m_0 = 200 \,\, {\rm GeV} \\ m_{1/2} = 160 \,\, {\rm GeV} \\ A_0 = -400 \,\, {\rm GeV} \\ \tan \beta = 10 \\ {\rm sign}(\mu) = +1 \\ \sigma_{LO} = 110.0 \,\, {\rm pb} \,\, / \,\, \sigma_{NLO} = 151.8 \,\, {\rm pb} \end{array}$

Example: gluino pair production

Used Cuts

Select events with at least

- 2 same-sign leptons (e or μ) with p_T > 10 GeV
- 3 jets (*p*_T > 50 GeV)
- 100 GeV of missing transverse energy ∉_T

 $\sqrt{s} = 10 \; {
m TeV}$ ("Summer08" datasets)

Quality cuts		
Muon p_T	>	10 GeV
η	<	2.1
χ^2/n_{dof}	<	10
d ₀	<	0.2 cm
n _{Hits}	\geq	11
lso	<	0.2
HCAL Iso	<	6.0
ECAL Iso	<	4.0
Electron ID	=	"eidTight"
Рт	>	10 GeV
η	<	2.5
d_0	<	0.2 cm
lso	<	0.4
Jet p _T	>	30 GeV
η	<	2.4
EMÉ	>	0.1

Step 1: Demand 2 same-sign Leptons

- At least 2 same-sign leptons (e or μ, p_T > 10 GeV)
- 100 GeV of MET
- 3 jets (*p*_T > 50 GeV)

Events	\geq 2 SSL	MET	Jets
LM0 dataset	2260	1349	830
$L=100$ pb $^{-1}$	168.72	100.71	61.96
BG datasets	9229	331	48
$L=100$ pb $^{-1}$	2436.57	22.11	2.30

Step 2: MET Cut

- At least 2 same-sign leptons (e or μ, p_T > 10 GeV)
- 100 GeV of MET
- 3 jets $(p_T > 50 \text{ GeV})$

Events	\geq 2 SSL	MET	Jets
LM0 dataset	2260	1349	830
$L=100$ pb $^{-1}$	168.72	100.71	61.96
BG datasets	9229	331	48
$L=100$ pb $^{-1}$	2436.57	22.11	2.30

Step 3: Jet Cuts

- At least 2 same-sign leptons (e or μ, p_T > 10 GeV)
- 100 GeV of MET
- 3 jets (p_T > 50 GeV)

Events	\geq 2 SSL	MET	Jets
LM0 dataset	2260	1349	830
$L=100$ pb $^{-1}$	168.72	100.71	61.96
BG datasets	9229	331	48
$L=100$ pb $^{-1}$	2436.57	22.11	2.30

Charge misidentification (I)

Invariant mass distribution of same-sign lepton pairs

SUSY LM0 + Background, at least 2 same-sign leptons

Charge misidentification (II)

- Invariant mass distribution of same-sign electron pairs shows clear Z-peak
 - Z cannot decay into same-sign electrons
 ⇒ Misidentification of charge of one electron
 - Charge misidentification is important factor for estimation of SM background
 - \Rightarrow Need to determine charge misidentification rate
 - \Rightarrow Try to reduce charge misidentification rate
- Muon charge seems to be determined quite reliably

Significance

Events	\geq 2 SSL	MET	Jets
LM0 dataset	2260	1349	830
$L=100$ pb $^{-1}$	168.72	100.71	61.96
BG datasets	9229	331	48
$L=100$ pb $^{-1}$	2436.57	22.11	2.30

Using the significance estimator

$$S_{cL} = \sqrt{2((s+b)\ln(1+rac{s}{b})-s)}$$

61.96 signal events over 2.30 background events lead to a significance of $S_{cL} = 19.13$.

Need to develop background estimation technique

(No systematic uncertainties included, yet)

Opposite-sign lepton analysis

LM10

Analysis

	m_0 [GeV]	$m_{1/2} [{ m GeV}]$	A_0 [GeV]	$\tan\beta$	sign μ	σ_{LO} [pb]	σ_{NLO} [pb]	$m_{ll,max}$ [GeV]
LM0	200	160	-400	10	+1	110.0	151.8	52,7
LM1	60	250	0	10	+1	16.1	21.7	78,2
LM9	1450	175	0	50	+1	11.1	18.2	62,9

Shape Dependence (I)

LM1

- Subsequent two-body decays via on-shell slepton
- Mass edge triangular

$$(m_{ll}^{max})^2 = rac{(m_{ ilde{\chi}_2^0}^2 - m_{ ilde{l}}^2)(m_{ ilde{l}}^2 - m_{ ilde{\chi}_1^0}^2)}{m_{ ilde{l}}^2}$$

Shape Dependence (II)

Final Event Selection

- Background mostly SUSY and tt
- Can be measured from data by looking at opposite-flavour lepton pairs

Selection

- 2 isolated opposite sign leptons
- 3 jets, $p_T > (100, 50, 50)$ GeV
- Missing transverse energy > 100 GeV

D. Sprenger Search for SUSY using Dilepton Events

Fit Model / Results

LM0

- Decay chain discoverable within first 200 pb⁻¹ at LM0, 250 pb⁻¹ at LM1, 350 pb⁻¹ at LM9
- Endpoint can be reconstructed with 200 pb $^{-1}$ at LM0 Combined fit ($m_{theo} = 52.7$ GeV):

$$m_{II,max} = (51.3 \pm 1.5_{stat} \pm 0.9_{sys}) \text{ GeV}$$

Summary

- Set up SUSY search using same-sign lepton events
- SUSY analysis using opposite-sign lepton events approved by CMS

Outlook

- Improve same-sign analysis: Systematic uncertainties, background estimation, charge misidentification rate, ...
- Extend same-sign analysis to τ channels: eτ, μτ, ττ (M. Edelhoff)

... waiting for data ... $(^_)/$

Backup

Backup Same-sign: Summer08 Datasets

SUSY LM0:

/SUSY_LMO-sftsht/SummerO8_IDEAL_V11_v1/GEN-SIM-RECO

ttbar:

/TTJets-madgraph/Fall08_IDEAL_V9_v1/GEN-SIM-RECO

ZJets:

/ZJets-madgraph/SummerO8_IDEAL_V11_redigi_v1/GEN-SIM-REC0 /AstarJets-madgraph/Fall08_IDEAL_V9_v2/GEN-SIM-REC0

WJets:

/WJets-madgraph/Summer08_IDEAL_V11_redigi_v1/GEN-SIM-RECO

Diboson:

/VVJets-madgraph/Fall08_IDEAL_V9_v2/GEN-SIM-REC0 /Zgamma/Summer08_IDEAL_V9_v1/GEN-SIM-REC0 /Wgamma/Summer08_IDEAL_V9_v1/GEN-SIM-REC0

QCD:

/JPsi/Summer08_IDEAL_V9_v1/GEN-SIM-REC0 /Upsilon25/Summer08_IDEAL_V9_v10/GEN-SIM-REC0 /QCDpt80/Summer08_IDEAL_V9_v10/GEN-SIM-REC0 /QCDpt80/Summer08_IDEAL_V9_v2/GEN-SIM-REC0 /QCDpt300/Summer08_IDEAL_V9_v2/GEN-SIM-REC0 /QCDpt470/Summer08_IDEAL_V9_v2/GEN-SIM-REC0 /QCDpt600/Summer08_IDEAL_V9_v2/GEN-SIM-REC0

Backup Same-sign: PATLayer1 Datasets

SUSY LM0:

/SUSY_LMO-sftsht/Summer08_IDEAL_V11_v1/GEN-SIM-RECO

ttbar:

/TTJets-madgraph/Fall08_IDEAL_V11_redigi_v10/GEN-SIM-RECO

ZJets:

/ZJets-madgraph/Summer08_IDEAL_V11_redigi_v1/GEN-SIM-RECO

WJets:

/WJets-madgraph/Summer08_IDEAL_V11_redigi_v1/GEN-SIM-RECO

QCD:

/QCD100to250-madgraph/Fall08_IDEAL_V11_redigi_v1/GEN-SIM-REC0 /QCD250to500-madgraph/Fall08_IDEAL_V11_redigi_v1/GEN-SIM-REC0 /QCD500to1000-madgraph/Fall08_IDEAL_V11_redigi_v1/GEN-SIM-REC0 /QCD100toInf-madgraph/Fall08_IDEAL_V11_redigi_v1/GEN-SIM-REC0

Backup Opposite-sign: Event selection

	$\sigma_{\text{LO}} \text{ [pb]}$	k-factor	HLT	≥2 leptons	≥3 jets	MET
SUSY LM0 signal	I	1,38	362	226	128	86
SUSY LM0	110	1,38	8167	1007	543	362
t t+jets	319	1,3	25655	2411	238	80
Z+jets	3700	1,14	541013	199773	510	I
W+jets	40000	1,14	3108397	298	5	2
VV, Wy, Zy	12,37,11	١,0	5444	885	2	0
QCD (p _T > 15), J/Ψ, Υ	-	١,0	28010134	560	4	0

- Single muon (11 GeV) and single electron (15 GeV) trigger
 - 97% efficient
- First lepton p_T > 16 GeV
- SingleJet (110 GeV)
 - 97,4% efficient

- 2 isolated opposite sign leptons
- 3 jets > (100,50,50) GeV
- Missing transverse energy >100 GeV

Efficiency of 24% for signal decays

Backup Opposite-sign: Objects

- Muons |η| < 2, p_T > 10 GeV
- χ²/ndf < 10
- Number of valid hits ≥ ||
- |d0| < 2 mm

- Electrons |η| < 2, p_T > 10 GeV
- Tight electron ID
- d0 < 2 mm

https://twiki.cern.ch/twiki/bin/view/CMS/VplusJets

- Missing transverse energy
 - Calorimetric MET
- Corrected for muons and jet energy scale

- Jets |η| < 2.5, p⊺ > 50 GeV
- SIScone5 jet algorithm
- Corrected up to level 3 using jet energy corrections
- Check overlap with electrons (ΔR<0.3)

Backup Opposite-sign: Different Benchmark Points

- Fit at different benchmark point using I fb⁻¹
- Reproduce at all LM points the theoretical endpoint in the invariant mass
- Statistical and systematic error are evaluated in the same way
- With I fb⁻¹ we can distinguish between 2- and 3-body decay based on goodness of fit