Strategies for leptonic SUSY-searches in and beyond mSUGRA

Carsten Meyer, V. Büscher, M. Hohlfeld, M. Lungwitz, T. Müller

Johannes Gutenberg-Universität Mainz

Outline

- Supersymmetry (SUSY)
- Phenomenology in the MSSM
- Basic Analysis Concepts
- Summary / Outlook

Supersymmetry (SUSY)

- New symmetry between Fermions and Bosons:
- Has a stable and only weak interacting lightest particle every SUSY-particledecay ends with in a large region of parameter-space: LSP (Lightest Supersymmetric Particle)
- Following tabular shows the particle-content of the "Minimal Supersymmetric Standard Model" (MSSM)

R-Parität = $+1$			R-Parität = -1			R-Parität = -1		
Teilchen	Symbol	Spin	Teilchen	Symbol	Spin	Teilchen	Symbol	Spin
Lepton	ℓ	1/2	Slepton	$ ilde{\ell}_{ m L}, ilde{\ell}_{ m R}$	0			
Neutrino	ν	$\frac{1}{2}$	Sneutrino	$\tilde{ u}$	0			
Quark	\mathbf{q}	$\frac{1}{2}$	Squark	\tilde{q}_L,\tilde{q}_R	0			
Gluon	g	1	Gluino	ĝ	$\frac{1}{2}$	~0		0.01
Photon	γ	1	Photino	$ ilde{ ilde{\mathbf{Z}}}$	$\frac{1}{2}$	$\tilde{\chi}_1^0$ is often	en the	LSP!
Z–Boson	Z	1	Zino	Ž	$\frac{1}{2}$			
$\operatorname{W-Boson}$	W^{\pm}	1	Wino	$ ilde{ ext{W}}^{\pm}$	$\frac{\overline{2}}{2}$ $\frac{1}{2}$	Neutraline	$\tilde{\chi}_{i}^{0}$	$\frac{1}{2}$
Higgs	$\mathrm{H}^0,\mathrm{H}^\pm$	0	Higgsino	$\tilde{\operatorname{H}}_{1}^{0}, \tilde{\operatorname{H}}_{2}^{+}$	1/2	Chargino	$\tilde{\chi}_{i}^{\pm}$	$\frac{1}{2}$
	$\mathrm{h}^0,\mathrm{A}^0$	0		$\tilde{H}_1^-, \tilde{H}_2^0$	$\begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$		1200	-

- Even the constraint MSSM has plenty of free parameters determing the mass-spectra.
- In principle 2 extreme search-strategies possible:
- 1.) Look for strongly constrained SUSY-modells (eg. mSUGRA)

Pro:

- Gives exact predictions what to search for
- → Easy to design!

Contra:

- Covers small area of SUSY-parameter-space
- → Most likely not realized by nature!

Mass

2.) Try to cover a larger area in parameter-space with a less modeldependent analysis using common information among the different models / regions in parameter-space

Pro:

 Increases the probability to find new signals, because of the larger coverage in parameter-space

Contra:

- Harder to design
- More difficult to handle statistics properly because of multiple comparisons
- At LHC, production of Squarks and Gluinos dominates. These decay often via charginos and neutralinos into the LSP and SM-particles.
 - → Study the impact of different mass-spectra on the kinematics

- ❖ To get a feeling for the many possible mass-spectra in the MSSM scan the free parameters and calculate the mass-spectrum for each combination of paramters.
 (,,SUSY without prejudice" arXiv:0812.0980v3 [hep-ph])
- Restrict the Scan to the so called phenomenological MSSM (pMSSM) containing 19 free parameters.
- The pMSSM contains following constrains:
- 1.) CP-Conservation (i.e. no new phases)
- 2.) Minimal flavor violation
- 3.) First two generations of fermions are degenerate

- Further introduce the additional constrains to scan only ranges leading to phenomenologically viable models:
- 1.) The **Neutralino1** is the LSP
- 2.) Stay above the LEP and Tevatron-limits given by the direct search for supersymmetric particles.
- 3.) Respect indirect measurements for new physics like $b \rightarrow s \gamma$ or $(g-2)_{\parallel}$
- 4.) Respect WMAP measurements to avoid that the relic density of LSPs overcloses the universe.
- 5.) ...

mSUGRA predicts:

$$M_1:M_2:M_3=1:2:6$$

$$\rightarrow m_{LSP} : m_{C1} : m_{Gluin0} = 1:2:6$$

- Many different mass-spectra and topologies in the pMSSM.
 - → Analyses optimized for mSUGRA not ideal!
- ★ Mass-difference of C1 and N1 has strong influence on Lepton-P_T
- Many Models with strongly degenrate C1 and N1
 - \rightarrow low-P_T Leptons

- ❖ Jet-P_T strongly correlated with the Mass-difference between the produced Squarks/Gluinos and the LSP
- → Strong degeneration will lead to soft decay-products.
- ❖ True H_T grows with growing mass-difference between the initially produced SUSYparticles and the LSP

(True H_T = scalar sum of truth-jet transverse momenta)

min. strong interacting mass - m(LSP)

Simulated Datasets

mSUGRA

- 8 x 8 Gridpoints (tan β = 10, A_0 = 0, sign(μ) positive)
- $m_0 = (60, 140, 220, ..., 620) \text{ GeV}$
- $m_{10} = (150, 170, 190, ..., 290) \text{ GeV}$
- → Squark- and Gluino-masses between ~350 GeV and ~850 GeV

pMSSM

- Pick mSUGRA-reference-points and change LSP/Gluino-mass-ratio and LSP/Chargino1-mass-ratio conserving the order:
 - $m(Gluino) > m(C_1) > m(N_1)$ for fixed m(C1).
- Grid with **3x7 points**:
 - $m(C1) / m(N1) \approx (1, 2, 10)$
 - m(gluino) / m(C1) \approx (2, **3**, 4, 5, 7.5, 10, 12.5)
- Keep Field-Content untouched.

Impacts of different mass-spectra on the kinematics

Which kinematic variables, used to select SUSY-like events are influenced by changing the SUSY-mass-spectrum?

1.) Momenta of Jets and related variables

- Strongly depend on the mass of the decaying **Squarks** and Gluinos
 - → The **heavier** the Squarks and Gluinos, the harder the Jets!
- **Heavier Squarks / Gluinos allow** for a tighter selection of the jet-related phasespace.

Impacts of different mass-spectra on the kinematics

2.) Amount of missing energy

- Also strongly depend on the mass of the decaying Squarks and Gluinos
 - → The **heavier** the Squarks and Gluinos, the **harder the LSPs**
 - → more missing Energy!
- In addition dependency on the mass of Chargino1 and the LSP itself
- → heavier Squarks/Gluinos allow for a tighter selection of related phasespace

Impacts of different mass-spectra on the kinematics

3.) Momenta of the Leptons

- Strong dependecy on the mass of Chargino 1 and LSP itself.
 - → Mass Difference determines whether W is virtual / real
 - → Determines momentum of Lepton

Large Mass-Differences between Chargino1 and LSP allow for tighter Lepton-momentumselection

Event-Kinematics strongly determined by:

- Mass of the initially produced SUSY-Particles (i.e. Squarks and Gluinos)
- Cross-section depends strongly on Gluino- and Squark -masses.
- Define variable <m^{Strong}_{SUSY}> to take this into account.

$$< m_{SUSY}^{Strong}> = \frac{\sigma_{\tilde{g}\tilde{g}}^{part}}{\sigma^{tot}} 2m_{\tilde{g}} + \frac{\sigma_{\tilde{g}\tilde{q}}^{part}}{\sigma^{tot}} (m_{\tilde{g}} + m_{\tilde{q}}) + \frac{\sigma_{\tilde{q}\tilde{q}}^{part}}{\sigma^{tot}} 2m_{\tilde{q}} + \frac{\sigma_{\tilde{t}1\tilde{t}_1}^{part}}{\sigma^{tot}} 2m_{\tilde{t}1}$$

- <m^{Strong}_{SUSY}> is a measure for the mean, strongly produced mass for a given Squark- and Gluino-mass.
- 2) Mass-Differences of the decaying SUSY-Particles.
- Masses of the particles in the cascade determine how much of the initial energy (Mass of Squarks and Gluinos) is available for the boost of the decay-products

Analysis Concept:

Instead of using fixed cuts for a SUSY-search, parametrize Cut values by mass-parameters, that describe the change in the kinematics shown on the previous slides.

- **Functional dependencies** observable:
- Optimal cut on H_T increases linear with $< m^{S \operatorname{trong}} > .$
- Although there are plenty of different SUSY-models, the optimal cutvalue can be described by a linear function with one parameter

Scalar sum of Jet-transverse momenta for **semileptonic** final states

- Optimal cut on 4th hardest jet is growing in $< m^{S \operatorname{trong}}_{S \sqcup S Y} > for$ fixed Gluino-masses.
- Offset grows with $m_{1/2}$
- Construct function dependend on Gluino mass to correct offset
- Possible to describe all points with one linear function

P_T of 4th hardest Jet for semileptonic final states

- Optimal cut on 4th hardest jet is growing in $< m^{S \operatorname{trong}}_{S \sqcup S Y} > for$ fixed Gluino-masses.
- Offset grows with $m_{1/2}$
- Construct function dependend on Gluino mass to correct offset
- Possible to describe all points with one linear function

P_T of 4th hardest Jet for semileptonic final states

- Optimal cut on missing tranverse energy is constant in $< m^{S \operatorname{trong}}_{S \sqcup S V} >$ for fixed Gluinomasses.
- → Again although the massspectra differ strongly, the description of the optimal cutvalue is fairly simple.

Missing transverse energy for **dileptonic** final states

- **Linear dependency** visible:
- Optimal cut on 4th hardest jet is growing in $< m^{S \operatorname{trong}} |_{S \coprod S Y} > for$ fixed Gluino-masses.
- Offset grows with $m_{1/2}$
- Apply same shifting method as for 1 lepton channel

P_T of 4th hardest Jet for **dileptonic** final states

5σ Discovery-reach for 1-lepton-final-states at 10 TeV and L = 100pb⁻¹

mSUGRA-Discovery-potential in dependency of m₀ and m₁₀

- Shown method shows high discovery potential in the mSUGRA-model.
- Masses of Squarks/Gluinos discoverable up to ~600 GeV in 2010.
- Discovery potential well **beyond Tevatron limits** already with **early data**.

 5σ Discovery-reach for 1-lepton-final-states at 10 TeV and L = 100pb⁻¹

Discovery-potential beyond mSUGRA

- Apply parametrized selection for non-mSUGRA points.
- Also high sensitivity for points with mass relations beyond mSUGRA.
- Decrease in efficiency for degenerate Chargino1 and Neutralino1 masses.
- Large Gluino masses lead to low production cross sections.

Summary / Outlook

- The MSSM shows a large amount of different SUSY-mass-spectra leading to various different topologies to search for.
- Mass-dependencies of some kinematic variables can be understood and used to parametrize the cutvalues on different mass-parameters.
- This parametrization can be used to calculate the optimal cut for a given set of parameters, which increases sensitivity.

Work in progress:

- Only showed some values for non-SUGRA like mass-pattern.
 - → Study influence of the change in the Mass-Pattern more systematically to cover as much potential signalsignatures as possible.

Backup

Minimal Supergravity (mSUGRA)

- Example of a GUT-SUSY-Theory
- Assumptions:
- 1.) Scalar masses unify at the GUT-Scale at a common mass called m
- 2.) Gaugino-masses unify at the GUT-Scale at a common mass called m₁₀
- 3.) Trilinear couplings unify also at a common coupling called A.

5 Parameters left:

m₀: unified scalar mass

m_{1/2}: unified gaugino mass

A₀: unified trilinear coupling

 $tan(\beta)$: ratio of the two Higgs - VEVs

sign(µ): Higgsino-mass-parameter

- Mass-Spectrum of the theory determined by the choice of these parameters
- Study the impact of varying m_0 and m_{10} on the mass-spectra for fixed A_0 , $tan(\beta)$ and $sign(\mu)$.