

GEORG-AUGUST-UNIVERSITÄT

GÖTTINGEN

Z+jets cross section measurement

with first data

Despoina Evangelakou

In discussion with: K. Bierwagen, U. Blumenschein, A. Quadt

2nd Institute of Physics, Georg-August-University Göttingen

Bundesministerium für Bildung und Forschung

Plan:

- Measurement of the inclusive and differential Z+jets cross-section and comparison with theory
- Validate and tune generators with first data

Preparation:

- Feasibility study with fully-simulated data for 100 pb⁻¹ at 10 TeV
 - Study statistical and systematic limitations
 - Establish necessary methods
 - Background estimation
 - Correction for detector effects
 - Correction for UE and fragmentation

- Generator comparison

Difference to CSC study

See ATLAS CSC book: http://cdsweb.cern.ch/record/1125884 and the presentation at the 2nd annual workshop: https://indico.desy.de/contributionDisplay.py?contribId=24&sessionId=15&confId=1158

- CMS energy: 10 TeV
- Include Z+jets as background to VBF $H{\rightarrow}\tau^{\scriptscriptstyle +}\tau^{\scriptscriptstyle -}$
 - Consider third jet, η distributions
 - Consider also jets with 20 GeV< $p_{\scriptscriptstyle T}$ <40 GeV
- Comparison of several methods for correcting detector effects

- √s = 10 TeV
- Fully simulated data:
 - <u>Signal:</u>
 - (Z-> ee)+jets: Alpgen+Jimmy, Pythia, MCatNLO
 - Backgrounds:
 - ttbar: MCatNLO+Jimmy
 - QCD: Pythia
 - Z->tautau: Alpgen+Jimmy
 - W->ev: Alpgen+Jimmy
 - Integrated luminosity > 300 pb⁻¹ (except QCD)

- Comparison of the MC generators used in ATLAS
- Signal and backgrounds
- Unfolding to the hadron level
 - Corrections parton level -> hadron level
 - Corrections detector level -> hadron level
- Statistical and systematic limitations

Comparison of the MC generators

- Alpgen predicts harder jets and larger jet multiplicity than Pythia and MCatNLO, better agreement with MCFM predictions
- McatNLO predicts broader η distribution

Side remark: Corrections on MCFM for UE and fragmentation are included

- Comparison of the MC generators used in ATLAS
- Signal and backgrounds
- Unfolding to the hadron level
 - Corrections parton level -> hadron level
 - Corrections detector level -> hadron level
- Statistical and systematic limitations

- <u>Signal selection</u>:
 - Select at least two electrons
 - p_T>15 GeV,
 - ∆R(e,e) > 0.2,
 - mass window (m $_{\rm ee} \pm 10 \; GeV)$
- Main backgrounds:
 - QCD jets (no electron ID cuts, but scale with rejection)
 - ttbar
 - Z -> tautau
 - W -> enu

	(Z->ee)+1jet	(Z->ee)+2jets	(Z->ee)+3jets
	Fraction [%]	Fraction [%]	fraction[%]
Z->ee	98.81±1.56	97.68±3.37	95.91±7.81
QCD dijets	0.61±0.13	0.52±0.25	0.46±0.55
Ttbar	0.55±0.12	1.75±0.46	3.55±1.51
N->ev	0.02±0.03	0.04±0.07	0.07±0.22
Ζ->ττ	0.004±0.01	0.01±0.04	0.00±0.00
All bkg	1.19±0.18	2.32±0.52	4.09±1.62

GEORG-AUGUST-UNIVERSITÄT

Differential Z+jets cross section

 $\Delta\,\eta_{j_1j_2}$

Pseudorapidity gap

Z+jets cross section measurement

Comparison data and theory (similar for generator validation)

- Comparison of the MC generators used in ATLAS
- Signal and backgrounds
- Unfolding to the hadron level
 - Corrections parton level -> hadron level
 - Corrections detector level -> hadron level
- Statistical and systematic limitations

Corrections parton → hadron level

Generate Pythia Z -> ee samples:

1. ATLAS standard

hadron level

- 2. No fragmentation
- 3. No fragmentation and no UE parton level

- Comparison of the MC generators used in ATLAS
- Signal and backgrounds
- Unfolding to the hadron level
 - Corrections parton level -> hadron level
 - Corrections detector level -> hadron level
- Statistical and systematic limitations

- 4 different corrections
 - 1. Factorized corrections
 - 2. Matrix unfolding
 - 1. Inversion w/o regularization
 - 2. Interative (Bayes) method
 - 3. Bin-by-bin method
- Use two statistically independend MC sets of 100 pb⁻¹
 - Training sample
 - Test Sample
- Study impact of different shape by correcting Alpgen with corrections derived from Alpgen and corrections derived from Pythia (full MC statistics)

Factorized Corrections

Terascale Alliance workshop '09

Matrix Method – w/o regularization

Terascale Alliance workshop '09

• Bayes Method:

• Bin-by-Bin Method:

• Input: truth distribution, migration matrix R_{ji} • Recalculate improved truth distribution μ_i from the measured distribution n_j by using the Bayes theorem $\hat{\mu}_i = \frac{1}{\varepsilon_i} \sum_{j=1}^N \frac{R_{ji} p_i}{\sum_k R_{jk} p_k} n_j$

Correction = measured / truth distribution (training sample)
Expected to be viable for small migration (migration matrix ≈ diagonal, bin size larger than resolution)

Residuals (2) Other methods

- Factorized corrections, Bayes unfolding: Fake jets not taken into account, Migration from very low-PT jets only partially covered -> Bias of 10-30% -> to be fine tuned
- Bin-by-Bin method good agreement, shape dependence to be checked

Shape of the training sample

• Bias by different shape of training sample small compared to statistical uncertainty

GEORG-AUGUST-UNIVERSITÄT Göttingen

Shape of the training sample

• Bias by different shape of training sample small compared to statistical uncertainty

Terascale Alliance workshop '09

- Comparison of the MC generators used in ATLAS
- Signal and backgrounds
- Unfolding to the hadron level
 - Corrections parton level -> hadron level
 - Corrections detector level -> hadron level
- Combined statistical and systematic limitations

Derived for factorized corrections, but expect similar results for other methods

Ratio data to theory (set to 1)

- Contribution from JES dominates
- Z+1jet: PDFs and parton level corrections
- VBF quantities: statistics
- Total additional uncertainty for Z+1-3 jets
 - 6% -12% (JES uncert. 5%)
 - 13% -25% (JES uncert. 10%)

MC generators comparison

• Differentiation between generators difficult but possible if the complete distribution is taken into account

- Investigated jet multiplicity, P_T distribution and VBF Higgs key quantities in (Z->ee)+jets events
- Compared prediction of various MC generators
- Investigated backgrounds, in particuler Ttbar, QCD
- Method to correct theory predictions from parton to hadron level
- Implementation and comparison of 4 methods for correcting for detector effects
- Comprehensive study of statistical and systematic errors

ToDo (as long as there is no data):

- Theory: Investigate scale dependence
- Parton->hadron level: compare corrections for different UE predictions
- Optimize corrections for detector effects, study regularization methods
- Study data-driven methods to extract the background

Back-Up Slides

Terascale Alliance workshop '09

Background estimation

	$Z \to e^+e^- + \ge 1jet$	$Z \to e^+e^- + \ge 2jets$	$Z \to e^+e^- + \ge 3jets$	S. 18.
Process	fraction [%]	fraction [%]	fraction [%]	
$Z \rightarrow e^+e^-$	98.81 ± 1.56	97.68 ± 3.37	95.91 ± 7.81	
QCD jets	0.61 ± 0.13	0.52 ± 0.25	0.46 ± 0.55 ullet	More QCD background at
$t\bar{t}$	0.55 ± 0.12	1.75 ± 0.46	3.55 ± 1.51	$\sqrt{s} = 14$ TeV because of
$W \rightarrow e \nu$	0.02 ± 0.03	0.04 ± 0.07	0.07 ± 0.22	
$Z \to \tau^+ \tau^-$	0.004 ± 0.01	0.01 ± 0.04	0.00 ± 0.00	missing isolation
total background/all events	1.19 ± 0.18	2.32 ± 0.52	4.09 ± 1.62	
	σ (ttbar)/ σ (Z) is smaller a			
$Z ightarrow e^+e^-$	91.9 ± 0.8	87.9 ± 1.3	80.0 ± 2.4	$\sqrt{s} = 10$ TeV.
QCD jets	6.0 ± 0.4	6.0 ± 0.8	6.9 ± 1.8	
$t\bar{t}$	1.9 ± 0.1	6.0 ± 0.4	13.0 ± 1.4	
$W \rightarrow e \nu$	0.1 ± 0.05	0.1 ± 0.05	0.05 ± 0.1	
$Z \to \tau^+ \tau^-$	0.01 ± 0.01	0.01 ± 0.01	0.01 ± 0.01	
total background/all events	8.0 ± 0.6	12.1 ± 0.9	20.0 ± 2.3	

is smaller at

Comparison of the MC generators

GEORG-AUGUST-UNIVERSITÄT

GÖTTINGEN

Combined Uncertanties

MC generators comparison

