

A TEST SYSTEM FOR A FAST DATA TRANSMISSION LINE

Proposal approved by Helmholtz Alliance Detector Board

Tobias Flick, Uni Wuppertal
Ingrid-Maria Gregor, DESY
Andreas Kugel, ZITI, Uni Heidelberg
Dirk Wiedner, Uni Heidelberg

3rd Annual Meering
Helmholtz Allianz "Terascale"
11 - 13 November 2009
DESY, Hamburg

INTRODUCTION

- High-bandwidth radiation hard data-links are crucial readout components for future detector designs and upgrades (sLHC/LC).
- Radiation hard multi-GBit/s optical link has started at CERN -> GBT Project
- In all cases the links have to undergo a severe testing procedure.

- German groups working on radiation hard or radiation tolerant data-links with bandwidths of up to 10 GBit/s
 - electrical and optical components inside a severe radiation environment
 - data transmission for network purposes in trigger farms

SCOPE OF TEST SYSTEM

- to test and qualify fast data transmission link components (electrical and optical)
- capable to cope with a bandwidth higher than 10 Gbit/s
- used to test the different parts of the link individually or as a full system.
- Usage
 - during irradiation tests to qualify the radiation tolerance
 - to develop the target system embedding,
 - to stress-test the data-transmission.
- Stress-tests will check the link operation
 - in the foreseen temperature,
 - voltage and clock jitter range,
 - the test of error free data transmission and error correction,
 - and the transmission of the data with a given signal quality.

OVERVIEW FAST LINK TESTER

DETAILS

Driving Part

Receiving Part

- data analysis
 - High speed oscilloscope
 - FPGA implemented Bit Error Rate Tester (BERT)

Driving Part

- data generation
 - precision commercial pattern generator (systematic studies)
 - embedded in FPGA (protocol)
- driving the data into the link.
- electrical to optical conversion (for optical links)

System Design

- full system full digital functionality is provided with only the FPGA implemented pattern generator
- allows copies and distribution in institutes
- pattern generator and oscilloscope are travelling items

NEXT STEPS

- Proposal submitted in July -> requested 100kEUR
 - Pattern generator 25 kEUR
 - Modular adapter boards 5 kEUR
 - FPGA generator/receiver 10 kEUR
 - Oscilloscope (12 GHz) 60 kEUR
- Granted 30kEUR will cover the FPGA boards and partially other needed material
- 2010 -> prototype of FPGA board (Heidelberg)
- 2010/11 -> production of complete system and copies (Wuppertal)
- -> set up at DESY
- Pattern generator and oscilloscope can probably be funded via institute resources

