

Single-top t-channel 10 TeV cross section studies at 200 pb⁻¹ for ATLAS

Single top physics and fourth generation quarks

14/09/2009 **DESY Hamburg**

Gia Khoriauli & Markus Cristinziani Universität Bonn

Outline

- Introduction
- MC data samples and settings
- Atlas "topmixing" exercise
- t-channel analysis details and results
- Summary

Single Top Production Channels

• Three different channels of single top production:

t-channel Cross Section at the LHC

 t-channel and ttbar cross sections used in the ATLAS top physics study at 14 and 10 TeV c.m. energies of the LHC

Process		σ, pb	References		
14 TeV					
	t-channel	246	Z.Sullivan, Phys. Rev., D70, 114012		
	ttbar	833	R. Bonciani et al., Nucl. Phys., B529		
10 TeV					
	t-channel	125	MC@NLO		
	ttbar	402	S. Moch, P. Uwer, Phys. Rev. 2008, D78, 034003		

Monte-Carlo Settings and Samples

- $M_{top} = 172.5 \text{ GeV}$, $\sqrt{s} = 10 \text{ TeV}$
- Monte-Carlo generators and SM processes:
 - AcerMC + Pythia
 - t-channel
 - Wt-channel
 - ttbar
 - Alpgen + Herwig
 - Wbb+jets (0-3 partons)
 - W+jets (0-5 partons)
 - Z+jets (0-5 partons)
 - Herwig
 - ZZ, WZ, WW
- ATLAS detector Geant4 Simulation

Atlas Topmixing Exercise – <u>Pseudo Data</u>

- Mix the Monte-Carlo SM processes samples (listed on the previous slide)
- Scale the samples cross sections with unknown factors (scale factors) during the mixing procedure
- Produce reconstructed "data" as the different event streams using the different trigger menus in the selection:
 - electron (egamma) events stream
 - muon events stream
- Try to measure these unknown scale factors \rightarrow cross sections

• Main assumptions:

- our Monte-Carlo model correctly describes the shapes of SM processes
- but their total cross sections might be differnet from the expected ones universitätbor

Analysis Strategy Overview

- Select exclusive events by the presence of an elctron (egamma) or a muon
 - by applying orthogonal trigger requirements to the event streams
- Use the selected **muon** events to determine the main backgrounds cross section scale factors by **fraction fitting** method
 - Z+jets
 - W+jets together with Wbb+jets
 - ttbar toghether with Wt-channel
 - after single top preselection
- Use the **egamma** events for t-channel analysis into the **electron final state**
 - normalize the backgrounds with the calculated scale factors
 - apply pre- and t-channel selection cuts (next slide)
 - determine scale factor for t-channel
 - use the event counting method

9/14/2009

t-channel Selection Cuts

Pre-selection cuts

- $E_T^{miss} > 20 \text{ GeV}$
- High p_T lepton, p_T >30 GeV
- No second lepton with $p_T > 10 \text{ GeV}$
- At least two high p_T jets^{*}, p_T >30 GeV
- less than 5 jets with $p_T > 15$ GeV

t-channel selection cuts

- Pre-selection, electron final state
- High p_T b-jet, p_T >50 GeV
- leading non-b-jet in

the forward region, |eta|>2.5

* Overlaping jets to electrons are removed, $\Delta R < 0.2$

9/14/2009

G.Khoriauli, Single top physics and fourth generation quarks

CERN-OPEN-2008-020

Motivation for the t-channel Selection Cuts

b-jet Pt and leading non b-jet eta distributions after the **pre-selection** cuts

Pt>50 GeV b-jet cut removes large fraction of the W+jet background

Leading non b-jet eta cut, abs (eta)>2.5, significantely reduces the ttbar background

3597

1.575

-0.02055

egammaStream

Wbb Winu+Jets

di Bosons

ttbar+Wt

ZII+Jets

universität**bonn**

tch

Ideas on Cut Refinement

- Ht scalar sum of all selected analysis objects momenta
 - good electrons and muons
 - jets after overlap removal
 - missing transverse energy is not included
- Ht seems to be a good discriminator for ttbar background...
- The study is ongoing...

Ht – distribution afterthe muon trigger selection

t-channel Selection, Electron Final State

 Jet multiplicity after a muon trigger selection

- Numbers of the "data", total MC background, measured and expected t-channel events
- Shows mismatch of the t-channel cross section

Background Scale Factors Estimation

9/14/2009

Background Sampling for Fraction Fitting

- Other background normalization is also needed
- Use the **fraction fitting** method
- Fit 1- and 2-dimensional distributions after trigger selection
- It is difficult to to get reliable results because of the large number of processes involved in a fitting procedure

- Try to combine the different processes, which have the similar shapes
 - ZZ + WZ + WW
 - ttbar + Wt
 - W+jets + Wbb+jets
- Reduces the number of fit free parameters
 reliable results from fits

1- & 2-Dimensional χ² - Fraction Fits

- Apply trigger selection to the "Data" & MC
- Use several basic distributions for 1- and 2-dimensional χ^2 fits:

InvMassOfTwoOpoSignSameFlavorLeptons

Z+jets and Wbb, W+jets Scale Factors

ttbar+Wt, di-Bosons and t-ch. Scale Factors

universitätbonn

Leading Muon vs. Leading Jet Pt Distribution Fit Result for Scale Factors

- Fit converged and results are within expectations
- Z+jets scale factor is the same (within the errors) of the one obtained using Z-mass window cut

1-sigma error contour for the W+jets scale factor vs. the Z-jets scale factor shows clear anti-correlation

Wbb, W+jets scale factor = 0.903 ± 0.006 (stat.)

^{9/14/2009}

Determination of the ttbar Scale Factor

- Use 1- and 2-dimensional fraction fits to determine the ttbar cross section scale factor
- Use events after the pre-selection
 - **ttbar** background relative fraction in data increases
 - ightarrow better fit results for the ttbar scale factor can be obtained
- After the pre-selection cuts the event statistics is significantely reduced
 - use 2-dimensional distributions with the relativlely smaller number of bins
 - NOfJet_PtOfLdgMuon
 - NOfJet_PtOfLdgJet
 - NOfJet_HtNoEtmiss
 - ...

9/14/2009

Determination of the ttbar Scale Factor

t-channel Scale Factor Measurement, 200 pb⁻¹

- Re-scale Z+jets, Wbb_W+jets and ttbar+Wt cross sections by the estimated scale factors
- Apply electron trigger and tchannel selection to egamma events
- The plot on the right shows jet multiplicity after the final t-channel selection
- W+jets (with Wbb+jets) and ttbar (with Wt-channel) still remain as the main backgrounds

t-channel Scale Factor Measurement, 200 pb⁻¹

• Numbers of "data", t-channel signal and other background events remaining after the electron trigger and t-channel selection cuts

	data	t-ch.	ttbar+Wt	Wbb,W+jets	Z+jets	di-Bosons
Trigger selection	1.94242e+06	2413.24	15496.9	1.66852e+06	222049	2828.3
t-channel selection	341.2	83.94	99.5	93.2	1.1	1.2
			Total MC Bkg.: 195.0			

• Determine t-channel scale factor as

 $(N_{data} - N_{bkg}^{MC}) / N_{t-ch.}^{MC}$

t-channel scale factor: **1.74 ± 0.34 (stat.)**

Summary

- Single top t-channel cross-section determination analysis into the electron final state has been done
- The analysis have been performed using the 10 TeV MC and pseudo data at the 200 pb⁻¹ integrated luminosity of the LHC run
- Unknown scale factors for cross sections of the main background and t-channel signal have been determined using Z-mass window and multi-dimensional fraction fitting methods

Cross Section Scale factors:			
Zll+Jets	0.939 ± 0.005 (stat.)		
Wbb, Wlnu+Jets	0.903 ± 0.006(stat.)		
ttbar+Wt	1.02 ± 0.07 (stat.)		
t-channel	1.74 ± 0.34 (stat.)		

