Single-top search: strategies for 1st data at LHC

Workshop on single top physics and fourth generation quarks DESY – 15 September 2009

Julien Donini, LPSC Grenoble

Single Top Analyses: From Tevatron ...

... to LHC

Single Top Quark Production at LHC

Single top production

Weak production mechanism: Wtb vertex

ECM	t-ch	s-ch	Wt-ch
14 TeV	246 pb	11 pb	66 pb
10 TeV	124 pb	7 pb	32 pb
7 TeV	59 pb	4 pb	13 pb

LHC (14 TeV) vs Tevatron Signal: σ_t and $\sigma_{Wt} > \times 100$, σ_s only $\times 10$ BG: $\sigma_{W+jets} \times 10$, $\sigma_{ttbar} \times 100$

Single Top Analyses With Early Data

Strategy first data

Depend much on ECM and integrated luminosity

10 TeV collisions and ~200 pb

• **t-channel**: few 100 selected events in I+jets channel, S/B~0.5 and a signal significance (including systs.) of 2-3 σ can be achieved

- Wt-channel: excess in II and I+jets channels
- s-channel: out of reach

7 TeV collisions

• obtaining similar results should require about 4 times more luminosity

Points of view

- →pessimistic: low stat, no signal excess, calibration data ...
- (very?) optimistic: evidence of t- and Wt- channels, maybe bad agreement with SM (hints for 4th quark generation or new bosons)

Single Top Search With Early Data

• Search for t-channel signature

t→Wb→lvb: lepton+jets selection

Focus first on **cross section measurement** of dominant single top **t-channel** process

Triggers

- high p_T inclusive lepton (e^{\pm}, μ^{\pm})
- lepton+jets
- Missing E_T +jets (not for early data)

Lepton ID

- 1 isolated lepton candidate
- loose and tight definitions are useful (estimate of multijet rates)

Single Top Search With Early Data

• Search for t-channel signature

t→Wb→lvb: lepton+jets selection

Missing E_T

- signal has large missing transverse energy
- cut on MET helps reduce multijet background
- do not trust missing E_T too much during early data commissioning of detectors

Single Top Search With Early Data

Search for t-channel signature

t→Wb→lvb: lepton+jets selection

Jets

- typically 2-4 jets signature
- best S/B for 2-jets events

b-jets

- 1-2 b-quark jets fall in det. acceptance
- b-tagging is a crucial aspect of single top analyses !
- first data: commisioning of simple b-tagging algorithms
 - → b-tag eff. ~ 40-50% (± 5%)
 - \rightarrow light jet rej. ~ 100 (10% err.)

Event Selection

Event pre-selection

Event Selection

Event pre-selection

Event Selection

Event pre-selection

Monte Carlo Modeling

Much progresses in recent years

- NLO Monte Carlo generators: MC@NLO, POWHEG
- Prescriptions to match Matrix Element and parton shower jets (MLM matching in ALPGEN)

At LHC: tuning of MC with data will be an important step

- Parton showering and underlying event
- Kinematical distributions of reconstructed objects (lepton, jets ...)
- ➔ Affect single top acceptance

Data-driven models

In particular used for modeling of multijet background Several useful techniques come from Tevatron

Single top processes

Progresses in simulating and modeling ST processes

• ex: defined procedure for Wt-channel simulation

Generators:

- Tevatron: MADEVENT, SINGLETOP
- LHC: now also AcerMC, MC@NLO

In principle single top analyses should benefit from more accurate **NLO** simulation. **Negative** event weights can be a problem (for ex in multivariate methods)

Top pairs

Generators: MC@NLO (ATLAS), MADGRAPH (CMS), ...

Normalizing rate using data \rightarrow better precision than theoretical uncertainties

W+jets

Generator: ALPGEN

- Separate Wjj, Wcc, Wcj and Wbb processes
- Wbb and Wcc fraction are underestimated in ALPGEN. Correction factor derived from data (ex: untagged samples)
- Normalize total rate using data

Multijet

Model and normalize QCD background using data (before b-tagging) in sideband regions.

define region in two (assumed) uncorrelated variables

 \rightarrow ex: lepton isolation and Missing Et

Number of QCD events in signal region (S) before tagging

$$N_{QCD} = \frac{N_B \times N_C}{N_A}$$

• correction from contribution of W and ttbar events (estimated from MC)

 N_{QCD} for ≥1 tag data is estimated by appling QCD tagging rate (measured in multijet data)

Background Normalization

Matrix Method

Normalize W+jets and multijet rates using data before b-tagging

Two data samples:

- tight sample: all event selections except b-tagging
- **loose** sample: same but leptons selected with loose identification criteria Solve following equations:

$$N_{loose} = \bigvee_{loose}^{fake-\ell} + \bigvee_{loose}^{real-\ell} \rightarrow W\text{-like events (W+jets, ttbar)} \rightarrow QCD \text{ events in loose sample}$$

$$N_{tight} = N_{tight}^{fake-\ell} + N_{tight}^{real-\ell} \rightarrow Prob. \text{ for real isolated lepton to pass tight selection: measured in Z->II data}$$
Prob. for fake isolated lepton to pass tight selection: measured in multijet events

Background Normalization

Matrix Method

Normalize W+jets and multijet rates using data before b-tagging

Two data samples:

- tight sample: all event selections except b-tagging
- **loose** sample: same but leptons selected with loose identification criteria Determine from equation solutions:

Then the rate of these background in the ≥ 1 b-tag signal sample is determined by applying (data-driven) tag rate functions

Fitting Discriminant Shape

Construct (multivariate) discriminant from data before tagging

- Likelihood fit allows measurement of W+jets and ttbar background (QCD contribution is fixed and estimated from other data samples)
- then fraction of ttbar, mistag and W+HF is extrapolated in tagged data

Example: binned likelihood fit to NN output (CDF)

At LHC preliminary studies using NN (see D. Hirschbuehl talk): → a precision better than theoretical uncertainties should be achievable for ttbar and W+jets rates with 200 pb⁻¹

Correction Factors

Monte Carlo corrections

Correct simulated samples so that reconstruction and selection efficiencies match those found in data.

Correction factor that will need to be estimated with LHC first data are:

- Trigger efficiency: measured from different triggered datasets
- Lepton ID efficiency: $Z \rightarrow II$ data (tag and probe method)
- Jet energy scale and resolution: Z/γ+jets data
- b-tagging efficiencies: heavy flavor multijets data, but also ttbar events
- mistagging efficiencies: multijet data (inclusive sample of jet triggers)

Contacts with dedicated performance and reconstruction groups (lepton ID, b-tagging ...) are a very important part, in particular for early data !

Background Validation

Data/MC validation

Check that simulated (and data-driven) backgrounds fit data in control samples

• Control region orthogonal to signal region: sample before tagging (W+3jets), 0-tag sample (W+2jet) ...

• Shape comparison of kinetic variables, angular distributions, correlation between objects, etc

Multivariate Analyses

MVA: Boosted Decision Trees, Neural Networks $\dots \rightarrow$ increase sizably sample purity by exploiting many input variables and their correlations

- Complex methods: several internal parameters (number of trees, nodes, etc) that need to be carefully tuned \rightarrow avoid overtraining
- Validation of input variables with data
- Cross check of multivariate discriminants in well defined control regions

Example from D0:

- 2j, low H_T: W+jets dominated
- 4j, high H_T: ttbar
 dominated

Systematic Uncertainties

Evaluation of systematics

In general three types of errors:

- acceptance: trigger, lepton ID, JES, b-tagging, Monte Carlo ...
- **background**: W+jets modeling (Q² scale), multijet normalization (matrix method) ...
- Iuminosity

Some systematics can be evaluated from MC, but other need data.

First single top x-section measurements dominated by systematics

- \rightarrow b-tagging and mistagging: depend on algorithm, tuning with data
- \rightarrow JES: can be large, in particular for low p_T jets
- \rightarrow luminosity: effect is reduced if main backgrounds are data-driven

Cross Section Measurement Method

Statistical tools

Posterior probability density function of signal cross section:

- Ensemble tests: propagate uncertainties (stat, syst) on measurement
- construct p.d.f with Markov Chain Monte Carlo, Bayesian methods ...

Interpretation of result

Signal excess ? → significance for excluding BG only hypothesis, interpret result within SM and BSM scenarios

No excess ? \rightarrow derive limits ... will be luckier next time (with more data !)

Conclusion

Single top analysis are complex

• Need to reconstruct and identify precisely different type of objects: leptons, jets, missing Et, b-tagged jets

• Lot of effort to improve signal purity, control systematics, etc

→ At LHC single top analyses will be among the first to use b-tagging and perform multivariate analysis

Results can be very rewarding

Direct probe for new physics ! Already with 200-1000 pb⁻¹ can expect interesting results for t- and Wt-channels

BACKUP

Single Top and New Physics

Window to new physics

- Electroweak interaction
- \rightarrow Cross section proportional to $|v_{tb}|^2$
- → Sensitive to any new particle that can modify the top weak coupling

Single Top Observation ! (at Tevatron ...)

- Single top 5σ observation: CDF/D0
 - D0: <u>http://arxiv.org/abs/0903.0850</u>
 - CDF: <u>http://arxiv.org/abs/0903.0885</u>
 - See also results shown at winter conferences (Moriond EWK)
- Combination of several multivariate techniques
 - D0: DBT, Bayesian NN, ME $\rightarrow \sigma_{st} = 3.94 \pm 0.88$
 - CDF: Likelihood, NN, ME, Likelihood opt. s-ch, BDT, MEt+jet

