Estimate of the W+jets in single-top analyses by a fraction fitting method

M. Alhroob D. Bartsch, E. Nuncio

Physikalisches Institut Rheinische Friedrich-Wilhelms-Universität Bonn

September 14, 2009

- In order to understand the single-top channel, W+jets and $t\bar{t}$ backgrounds have to be well measured
- There are different methods to measure the W+jets such as Z+jets to W+jets ratio, likelihood, matrix method
- Fraction fitting is a robust method to measure the W+jets cross-section
- This cross section is a data driven estimate for the W+jets background in single-top measurement

Monte Carlo samples

mc08 Monte Carlo samples (10 TeV) $t\bar{t}$, W+jets, Z+jets, single top, WW, WZ, ZZ, W $b\bar{b}$

Simulated Data sample

The method was tested on the Mixing exercise sample user.RichardHawkings.0108175.topmix.Muon.AOD.v5 (Muon stream) with integrated Luminosity 168.24 pb^{-1}

Following the CSC cuts

Preselection

- $\not\!\!\!E_T > 20 \text{ GeV}$
- One and only isolated lepton with high P_T
 - $P_T > 30 \text{ GeV}$
 - et_cone20 < 6 GeV
 - $|\eta| < 2.5$
- A veto on the second isolated lepton $P_T > 10 \text{ GeV}$
- Nō jets \leq 4 with $P_T >$ 15 GeV, $|\eta| <$ 5
- Nō jets \geq 2 with ${\it P_T}>$ 30 GeV, $|\eta|<$ 5
- At least 1 b-jet with $P_{T}>$ 30 GeV, $|\eta|<$ 2.5(Jet_W >3.95)

t-channel selection

- At least 1 b-jet with $P_T > 50 \text{ GeV}$
- \bullet The hardest light jet has to be in the forward region $|\eta|>\!\!2.5$

	This analysis (10 TeV)	CSC numbers (14 TeV)	
	ϵ (%)	ϵ (%)	
Preselection	4.7	4.1	
b Jet P _T	3.3	2.9	
light Jet η	1.1	0.9	
S/B	0.40	0.37	

 \bullet Reasonable agreement with the CSC with a little differences due to the different CME

Distributions after CSC cuts

- The dominant backgrounds are the W+jets and $t\bar{t}$
- It is very difficult to separate background from the signal
- the background has to be measured in the signal region

Fraction Fitting method used to estimate the W+jets background

ROOT TFractionFitter class

• A technique of fitting templates of various sources to data in order to extract constituent fractions

$$\alpha_1 M_1 + \alpha_2 M_2 + \ldots + \alpha_N M_N = Data$$

- Taking into account both data and Monte Carlo statistical uncertainties
- see http://arxiv.org/abs/0803.2711
- ROOT TFractionFitter class was used for the study

Z+jet background scaling factor

• The method was tested by spliting the MC to 2 statistically independent samples getting $\chi^2/dof \approx 1$ The scaling factor of Z+jets (0.91) will be used later

Preselection

- ∉_T >20 GeV
- \bullet One and only isolated lepton with high $P_{\mathcal{T}}$
 - $P_T > 30 \text{ GeV}$
 - et_cone20 < 6 GeV
 - |η| < 2.5
- A veto on the second isolated lepton $P_T > 10~{
 m GeV}$
- Nō jets \leq 4 with $P_T >$ 15 GeV, $|\eta| <$ 5
- Nō jets \geq 2 with P_T > 30 GeV, $|\eta|<$ 5
- At least 1 b-jet with $P_{T}>$ 30 GeV, $|\eta|<$ 2.5(Jet_W >3.95)

t-channel selection

- At least 1 b-jet with $P_T > 50 \text{ GeV}$
- The hardest light jet has to be in the forward region $|\eta| > 2.5$

W+jets sample considered as signal now

- Z+jets, single top, $t\bar{t}$, WW, WZ, ZZ, $Wb\bar{b}$ samples are added together to form others (background)
- $\bullet~Z{+}{\rm jets}$ background is scaled by a factor of 0.91

	Number of events
W+jets	24748
Others	4770
S(W+jets)/B(Others)	5

Input distributions

One dimensional fraction fit

	Scaling factor
W+jets	0.87 ± 0.05
Others	1.37 ± 0.28
χ^2/dof	17.27/31

	Scaling factor
W+jets	0.91 ± 0.03
Others	1.16 ± 0.14
χ^2/dof	20.20/55

One dimensional fraction fit

	Scaling factor
W+jets	0.91 ± 0.01
Others	1.14 ± 0.04
χ^2/dof	1.08/3

	Scaling factor
W+jets	1.18 ± 0.23
Others	1.03 ± 0.09
χ^2/dof	17.79/55

Correlations

M. Alhroob Estimate of the W+jets by fraction fitting

15 / 17

Systematics

- Combining MC samples introduces new systematic errors
- This error significantly smaller than the statistical error without MC combination
- Varying the SM $t\bar{t}$ fraction by $\pm 20\%$ the W+jets scaling factor varies by $\pm 1.6\%$
- Varying the SM WW, WZ, ZZ, Wbb fraction by ±20% the W+jets scaling factor varies by 0.2%

- Fraction fitting method can be used to measure the W+jets and Z+jets backgrounds
- Variables with higher correlation were not used
- current badly understood variables like $\not \in_T$ were not used
- Results for mixing exercise
 - Z+jets scaling factor is 0.91 \pm 0.01
 - $\bullet~$ W+jets scaling factor is 0.91 $\pm~0.02$
 - $\bullet\,$ W+jets scaling factor Systematic errors from combining MC samples $\approx\!\!2~\%$

