Single Top Strategies and Potentials at CMS

Jeannine Wagner-Kuhr Institut für Experimentelle Kernphysik, KIT

on behalf of the CMS Collaboration

Workshop on single top physics and fourth generation quarks DESY,14.9.2009

DESY, 14.9.2009

Overview

- Introduction
- t-channel modeling
- Early single top analysis
 - Event selection
 - QCD estimation
 - Robust sensitive variable
 - Prospects

Overview

Introduction

- t-channel modeling
- Early single top analysis
 - Event selection
 - QCD estimation
 - Robust sensitive variable
 - Prospects

CMS Detector

Single Top @ LHC

	Tevatron [pb] $\sqrt{s} = 1.96 \text{ TeV}$	LHC [pb] √s = 14 TeV	LHC [pb] √s = 10 TeV
s-channel	0.88	10.7 (• 12)	5 (· 6)
t-channel	1.98	247 (· 125)	130 (· 65)
associated production	0.094	56 (· 600)	29 (· 310)

T.Tait Phys. Rev. D61, 034001 (2001); N. Kidonakis et al. Phsy. Rev. D75, 071501 (2007); B.W. Harris et. al. Phys. Rev. D66, 054024 (2002); MCFM calculations by Maxim Perfilov

- Rise of t-channel x-section ~13 times larger than rise of W+jets x-section
- t-channel is most interesting channel for the first LHC data

Louvain, Belgium: Andrea Giammanco

Tehran, Iran: Nadjieh Jafari Mojtaba Mohammadi Najafabadi

Aachen, Germany: Martin Erdmann Dennis Klingebiel Jan Steggemann *(joined recently)*

Faculty of Physics

Moskow, Russia:

Anastasia Markina

Eduard Boos

Lev Dudko

Protvino, Russia: Dmitri Konstantinov

Karlsruhe, Germany:

Julia Bauer (née Weinelt) Thomas Müller Jeannine Wagner-Kuhr

DESY, 14.9.2009

Louvain, Belgium: Andrea Giammanco

Tehran, Iran: Nadjieh Jafari Mojtaba Mohammadi Najafabadi

Aachen, Germany: Martin Erdmann Dennis Klingebiel Jan Steggemann *(joined recently)*

Faculty of Physics

Moskow, Russia:

Anastasia Markina

Eduard Boos

Lev Dudko

Protvino, Russia: Dmitri Konstantinov

Karlsruhe, Germany:

Julia Bauer (née Weinelt) Thomas Müller Jeannine Wagner-Kuhr

DESY, 14.9.2009

Louvain, Belgium: Andrea Giammanco

Early analysis with 200/pb at √s=10TeV (PAS TOP-09-005)

Najafabadi Protvino, Russia:

Tehran, Iran:

Nadjieh Jafari

Mojtaba Mohammadi

Aachen, Germany: Martin Erdmann **Dennis Klingebiel** Jan Steggemann *(joined recently)*

Dmitri Konstantinov

Moskow, Russia: **Eduard Boos** Lev Dudko Anastasia Markina

Karlsruhe Institute of Technology

Karlsruhe, Germany: Julia Bauer (née Weinelt) **Thomas Müller** Jeannine Wagner-Kuhr

DESY, 14.9.2009

Louvain, Belgium: Andrea Giammanco

Early analysis with 200/pb at √s=10TeV (PAS TOP-09-005)

Protvino, Russia: Dmitri Konstantinov

Aachen, Germany: Martin Erdmann Dennis Klingebiel Jan Steggemann *(joined recently)*

Faculty of Physics

Moskow, Russia:

Anastasia Markina

Neural network analysis

Eduard Boos

Lev Dudko

Karlsruhe Institute of Technology

Karlsruhe, Germany: Julia Bauer (née Weinelt) Thomas Müller Jeannine Wagner-Kuhr

DESY, 14.9.2009

Jeannine Wagner-Kuhr

Tehran, Iran:

Nadjieh Jafari

Mojtaba Mohammadi

Najafabadi

Overview

Introduction

t-channel modeling

• Early single top analysis

- Event selection
- QCD estimation
- Robust sensitive variable
- Prospects

t-Channel Modeling

Modeling:

- MadEvent + PYTHIA for showering
- W-b and W-g fusion processes generated separately and matched in p_T of 2nd b to match ZTOP NLO calc. (total x-section and rate of events with a hard 2nd b)

ZTOP: PRD66,054024 (2002); MadEvent: JHEP 0709:028 (2007)

Comparison: MadEvent - ZTOP

√s=14TeV

Matched MadEvent sample reproduces kinematics of NLO ZTOP calculation well

Generator Comparison – Top Quark

MC@NLO: NLO MC, based on Herwig $(m_{b}=0 \text{ in } ME, m_{b} \neq 0 \text{ in showering})$

SINGLETOP: Matched 2->2 and 2->3 process $(m_p \neq 0)$

Good agreement between all three generators

Generator Comparison – Top Quark

- MadEvent: Matched 2->2 and 2->3 process (Default, $m_{\mu} \neq 0$)
- MC@NLO: NLO MC, based on Herwig $(m_p=0 \text{ in } ME, m_p \neq 0 \text{ in showering})$

SINGLETOP: Matched 2->2 and 2->3 process $(m_{\mu} \neq 0)$

Largest differences visible in variables of 2nd b

Overview

- Introduction
- t-channel modeling
- Early single top analysis
 - Event selection
 - QCD estimation
 - Robust sensitive variable
 - Prospects

Considered Processes

	Signal: Single top t-channel events, where the W decays leptonically			
b t b	into a muon and a neutrino	√s=10TeV		
$g \xrightarrow{b} \overline{b}$	Process	$\sigma \times BR[pb]$		
	single top, <i>t</i> channel $(W \rightarrow l\nu, l = e, \mu, \tau)$	42.9 (NLO)		
Important backgrounds:	single top, <i>s</i> channel $(W \rightarrow l\nu, l = e, \mu, \tau)$	1.6 (NLO)		
g, q'	single top, <i>tW</i>	29 (NLO)		
the the g	$t\overline{t}$	414 (NLO+NLL)		
Jee L	QCD multi-jet (µ-enriched)	121675 (LO)		
v J V	$Wc (W \rightarrow l\nu, l = e, \mu, \tau)$	1490 (LO)		
	$Wb\bar{b} (W \rightarrow l\nu, l = e, \mu, \tau)$	54.2 (LO)		
° Ze / ⁰	$Wc\bar{c} (W \rightarrow l\nu, l = e, \mu, \tau)$	118.8 (LO)		
Level g	W + light partons ($W \rightarrow l\nu, l = e, \mu, \tau$)	40 000 (LO)		
, e / / / / / / / / / / / / / / / / / /	$Zb\bar{b} (Z \rightarrow ll, l = e, \mu, \tau)$	44.4 (LO)		
$g \sim \overline{b}$	$Zc\bar{c} (Z \rightarrow ll, l = e, \mu, \tau)$	71.7 (LO)		
	Z + light partons ($Z \rightarrow ll, l = e, \mu, \tau$)	3700 (LO)		
v v	F WW	74 (LO)		
g	Diboson 4 WZ	32 (LO)		
\overline{d}	L ZZ	10.5 (LO)		
DESY, 14.9.2009	Jeannine Wagner-Kuhr	18		

Event Selection – Muon, Jets

Cut to Reduce Wlight

One b jet

Track counting High Purity Algorithm: D_{highPur}: impact par. significance (IPsig) of track in jet with third highest IPsig

1 jet with D_{highPur}>5.4

Cut to Reduce Top Pairs

• 2nd b veto

Track counting High Efficiency Algorithm: D_{highEff}: impact par. significance (IPsig) of track in jet with second highest IPsig

Cut to Further Reduce QCD

• Transverse mass of W boson $(t \rightarrow Wb)$

$$M_T = \sqrt{(p_{T,\mu} + p_{T,
u})^2 - (p_{x,\mu} + p_{x,
u})^2 - (p_{y,\mu} + p_{y,
u})^2} > 50 {
m GeV/c}^2$$

Event Yield

			_			
Process		N_{evt} in 200 pb ⁻¹		√s=10TeV		
	single top, <i>t</i> channel $(W \rightarrow l\nu, l = e, \mu, \tau)$	$102{\pm}1.8$		L=200pb ⁻¹		
	single top, <i>s</i> channel $(W \rightarrow l\nu, l = e, \mu, \tau)$	$1.8 {\pm} 0.2$				
	single top, tW	single top, tW 22.3 \pm 0.9				
	$t\overline{t}$	136.0 ± 3.5	Exped	ct only a		
	QCD multi-jet (µ-enriched)	12±6.7	small contribution			
	$Wc(W \rightarrow l\nu, l = e, \mu, \tau)$	$29{\pm}1.7$	of QC	D events, but		
	$Wb\bar{b} (W \rightarrow l\nu, l = e, \mu, \tau)$	$8.0{\pm}0.7$	we pr	efer not to		
	$Wc\bar{c} (W \rightarrow l\nu, l = e, \mu, \tau)$	1.2 ± 0.2	rely o	n predictions		
	W+ light partons $(W \rightarrow l\nu, l = e, \mu, \tau)$	- light partons $(W \rightarrow l\nu, l = e, \mu, \tau)$ 12±2.6				
	$Zb\bar{b} (Z \rightarrow ll, l = e, \mu, \tau)$	$2.7{\pm}0.4$				
$Zc\bar{c} (Z \rightarrow ll, l = e, \mu, \tau)$ Z+ light partons (Z \rightarrow ll, l = e, \mu, \tau) WW		$0.2{\pm}0.1$	Exported back			
		$2{\pm}1.2$	around uncerta	nd uncertain-		
		$0.9{\pm}0.3$	ties a	at the level of		
	WZ	1.2 ± 0.2	(30-5	0)%		
	ZZ	$0.17 {\pm} 0.04$				
Total Background		229±8.4		mple counting		
		ex	periment not			
Sta	ated uncertainties reflect stat. uncertainty of MC	po	SSIDIE			

QCD Background Estimation

QCD rate: Determine number of QCD events in signal region by performing a fit to the M_T distribution *(data-driven method)*

Signal-like (S):

- Use either Z+jets sample

 (+ M_w/M_z- rescaling, take one μ as
 ν), MC signal-like prediction or
 W-enriched sample
- Parametrize samples with Crystal Ball functions

QCD background (B):

- Use sample without b-tag requirement and anti-isolation cut
- Parametrize sample with a polynominal of rank 4

Uncertainty (syst.+stat.): ± 45%

DESY, 14.9.2009

Reconstruction of Single Top Events

W boson reconstruction:

W mass constraint $\rightarrow 2^{nd}$ order equation in $p_{z,v}$

- Complex solutions (36%)
 - → Varying $p_{x,v}$, $p_{y,v}$ so that $M_T = M_W \rightarrow Img(p_{z,v}) = 0$
- Two real solutions (64%)
 - → Pick the one with smallest $|p_{z,v}|$

Assigning the b quark from the top quark decay:

- Take the b-tagged jet
- → Correct in 92.2%, only in 4% the 2nd b is chosen

Polarization of the Top Quark

norm. to unit area

Single top s- and t-channel events: Polarization of the top quark (due to V-A nature of Wtb coupling)

→ passed to its decay particles

Single Top Prospects

Binned likelihood fit to cos \theta_{\mu}^{*}:

- Fit range: [-1,3/4]
- Take single top template from MC, assume flat template for sum of backgrounds
- No assumption about background size

Ensemble tests:

- Determine uncertainty on cross section and expected sensitivity (hypothesis test)
- → $cos θ_{ij}^*$ is very robust against sources of uncertainty (extreme bkg shapes: 2.7σ → 2.6σ)

DESY, 14.9.2009

Source of uncertainty	$\Delta \sigma$ [%]	Expected sensitivity
statistical	± 35	2.8σ
<i>b</i> tagging	\pm 7.3	2.7σ
mistag	± 0.4	2.7σ
JES	± 5.5	2.7σ
MET	± 9.9	2.7σ
PDF	± 5.5	2.7σ
total	± 39	2.7σ

Luminosity Projection

Expected sensitivity as a function of integrated luminosity:

- Method would need
 ~700/pb to manifest
 an observation
- There is a good chance to obtain an evidence with 200/pb

stat. uncertainties only

Summary

t-channel modeling:

- Top kinematics of different generators (SINGLETOP,MadEvent, MC@NLO) agree well
- Some discrepancies visible in 2nd b variables (presumably m_b effects)

Early single top analysis - fit cosθ^{*}: (muon-jet angle in rec. top quark rest frame)</sup>

- Robust against systematics and size of backgrounds
- Scenario: 200/pb @10 TeV:
 - → Exp. Uncertainty on x-section:
 ± 35% (stat.) ± 14% (syst.) ± 10% (lumi.)
 - \rightarrow Can realistically achieve $\sim 3\sigma$

