

Triggers for top and 4th Generation Quarks

Marta Felcini

University College Dublin

Workshop on single top and 4th generation quarks DESY, Sept. 14th-15th, 2009

Results presented here have been collected from public documents ATLAS Physics Performance Book, CMS Physics TDR, ATLAS and CMS public physics pages, conference articles and public talks

Thanks to the organizers of this very interesting workshop and to colleagues in ATLAS and CMS especially:

ATLAS: D.Berge, F. Ledroit, A. Lucotte, S. Mehlhase, P. Ryan, E. Ros, M. Zur Nedden, CMS: J. Cuevas, A. Giammanco, S. Goy, G. Landsberg, C. Leonidopoulos, P. Lobelle, E. Perez, W. Smith

Outline

- 1. Overview of ATLAS and CMS Trigger Systems
- 2. Trigger Menu Development and Bandwidth Allocation
- 3. Triggers for top and 4th generation quarks

DESY, Sept. 14th-15th, 2009

1. Overview of ATLAS and CMS Trigger Systems

YE-1 YE-2 YE-3 Pixels Tracker ECAL HCAL MUON Dets. Superconducting Total weight : 12500 t Overall diameter : 15 m YB-2 Overall length : 21.6 m Magnetic field : 4 Tesla http://cms.cern.ch

YB0

DESY, Sept. 14th-15th, 2009

Trigger Challenges

1. High speed -> cope with high bunch cross. rate

Bunch crossing rate B = 40 MHz-> trigger clock

2. High selectivity -> from 40 MHz to <~ 200 Hz (to storage) while retaining all the physics of interest

 $\sigma_{inel} \sim 80 \text{ mb} \geq 10^8 \sigma_{tt} \rightarrow 1 \text{ in} 10^8 \text{ is a tt event}$

3. High granularity -> cope with high occupancy

At L=10³⁴cm⁻²s⁻¹ -> Event Rate R = σ_{inel} L ~ 800 MHz f = fraction of filled bunches ~ 0.8 Number of events/Bunch = R/(B f)~25 25 pile up events/bunch cross.w/ ~2000 particles produced

> Operating conditions: An example: Higgs in 4 muons + ~20 minimum bias evts. Ch. tracks w/ pt > 2 GeV

Reconstructed tracks with pt > 25 GeV

ATLAS 3-Level Trigger vs CMS 2-Level Trigger

Level-1 trigger (Hardware, Firmware): reduce 40 MHz to 100 kHz Level-2xLevel-3 or HLT (software): reduce 100 kHz to 100 Hz

Level-1 Trigger (Lvl-1T)

The Level-1 trigger, implemented using custom electronics, inspects events at the full bunch-crossing rate, while selecting 100 kHz for further processing

Detector data stored in Front End Pipelines.

- Trigger decision derived from Trigger Primitives generated on the detector.
- Regional Triggers search for jets, isolated e/γ and μ and compute the transverse, missing energy of the event.
- Event Selection Algorithms run on the Global Triggers

LvI-1T Data Flow

Workshop on single top and 4th gen. quarks DESY, Sept. 14th-15th, 2009

Marta Felcini, UCD

deposition evaluation

CMS High Level Trigger and DAQ

Further online selection is performed in the high-level trigger (HLT) which reduces the 100 kHz input stream to 100 Hz of events written to permanent storage. The HLT system consists of a large cluster of commercial CPUs : the HLT Filter Farm

The High Level Trigger is purely software-based and achieves a 1/1000 rate reduction by executing offline-quality algorithms.

Workshop on single top and 4th gen. quarks DESY, Sept. 14th-15th, 2009

Marta Felcini, UCD

ATLAS HLT Selection Strategy

Credit: J. Haller

fundamental principles:

1) step-wise processing and decision

- inexpensive (data, time) algorithms first, complicated algorithms last.
- early reject

2) seeded reconstruction

- algorithms use results from previous steps
- initial seeds for LVL2 are LVL1 Rols

Example: Dielectron Trigger

CMS HLT Selection Strategy is quite similar

Workshop on single top and 4th gen. quarks DESY, Sept. 14th-15th, 2009

ATLAS trigger terminology:

- Trigger chain
- Trigger signature (called item in LVL1)
- Trigger element

ATLAS Trigger and DAQ Architecture

Credit: J. Haller

2. Trigger Menu Development and Bandwidth Allocation

YE-3

DESY, Sept. 14th-15th, 2009

The trigger criteria must be adapted to the plan and goals of the experiment at each luminosity

The Plan: from start-up to discovery

Luminosity range	Goals	Definition of Signal	Definition of Background
10 ²⁹ s ⁻¹ cm ⁻² -10 ³¹ s ⁻¹ cm ⁻²	Calibrate and align all the sub-detectors	QCD events	Machine, detector noise
10 ³¹ s ⁻¹ cm ⁻² -10 ³³ s ⁻¹ cm ⁻² @ 10 ³² s ⁻¹ cm ⁻² collect O(100/pb)/mo, O(1/fb)/ y (Tevatron now: ~4/fb/expt)	Measure the Standard Model processes: b-phys. , W/Z ,top Use them for more refined detector calibration	Standard Model processes: b-phys., W/Z ,top	As above and QCD events
10 ³³ s ⁻¹ cm ⁻² -10 ³⁴ s ⁻¹ cm ⁻²	Detector well calibrated and response well understood Enter the "Discovery Mode"	New "expected" Physics: Higgs Supersymmetry New unknown: ???	As above and Standard Model processes

Define trigger criteria to optimize trigger performance in serving the above plan

Trigger menu, paths and their use

Trigger type/path	Trigger conditions	Purpose
Inclusive	PTPrescaleThresholdfactor	High P _T triggers used for:
Single object	P1 1	(W,Z, top, Higgs,)
IsoMuon NolsoMuon	P2 (< P1) N2 (>1)	Low P_{T} triggers used for:
RelaxElectron Electron Others	P3 (<p2) (="" n3="">N2)</p2)>	 Low P_T signals (b-physics) Background
Double-object DoubleNolsoMuon DoubleRelaxElectron Others	P2, N2 P3, N3 P1, 1 P _T	measurements - Trigger efficiency measurement - Detector calibration
Exclusive Cross-object NolsoMuon+3jets RelaxElectron+NolsoMuon Others	Low P _T thresholds allowed (lower than for Inclusive single object triggers) because of low rate. Prescale factors may be needed at higher luminosities	Cross-object triggers used for specific selections of interest both for Standard Model process and for new physics searches 13

Example: LvI-1T Bandwidth Allocation & Rates

General guidelines:

Keep muons down to tow pT at modest bandwidth cost

Give higher bandwidth to electron/photons for further processing in the HLT

Give even higher bandwidth to energy and jet triggers (energy calibration)

Design tables for 17kHz L1 output rate 1/3 actual initial capability of 50 kHz

How do we allocate bandwidth between the different triggers?

For single object triggers:

- Muon rates are low
- Electron rates are high at low Et
- Jet rates are high also at high Et

For **double object triggers** (not shown here) rates are one to more orders of magnitude lower than for single object triggers: allow to keep low thresholds at small bandwidth cost.

Trigger class	Allowed Rate
Muon (single or double)	2 kHz
Electron/photon (single or double)	3 kHz
Jets or Total Transverse Energy	6 kHz
Tau jets	3 kHz
Combination of triggering objects	3 kHz
Total Level-1 output rate	17 kHz

Example: HLT Bandwidth Allocation & Rates

p_{_} threshold at HLT (GeV)^{UCD}

Design HLT tables for 150 Hz HLT output rate 50% of actual initial capability of 300 Hz

Share bandwidth according to detector and physics priorities at the given luminosity

Examples of **muon and electron (next page)** triggers rates and tables at L=10³²s⁻¹cm⁻²:

At this luminosity set **muon trigger thresholds** as **low as possible** (detector and physics studies)

Allow 1/3 of total bandwidth for muon triggers

Muon HLT table -Total rate: 50 Hz

Trigger	Threshold (GeV)	Note
1μ	16	
1μ	11	isolation
2μ	3	

Muon HLT – Signal efficiencies

Signal	HLT Single Relaxed	HLT Double
	muon eff.(%)	muon eff.(%)
$Z \rightarrow \mu \mu$	98.6	91.2
$W \rightarrow \mu \nu$	86.9	-

Example: HLT Bandwidth Allocation & Rates

Overview of bandwidth sharing among the different trigger classes a L=10³²s⁻¹cm⁻²

Trigger class	Allowed Rate
Muon (single or double)	50 Hz
Electron/photon (single or double)	30 Hz
Single jet or multi-jet or Missing Transverse Energy (MET)	30 Hz
Tau and b-jets	20 Hz
Combination of triggering objects	20 Hz
Total HLT output rate	150 Hz

Given the relatively low trigger thresholds affordable at this luminosity

Signal (W/Z, top, Higgs, etc) efficiencies are high: 70 to 100% depending on topology

LHC 2009-10 Planned Operations

AS								
	Month	OP scenario	Max number bunch	Protons per bunch	Min beta*	Peak Lumi	M. Lamont	% nominal
	1	Beam commissioning						
	2	Pilot physics combined with commissioning	43	3 x 10 ¹⁰	4	8.6 x 10 ²⁹	~200 nb ⁻¹	
	3	3.5 TeV	43	5 x 10 ¹⁰	4	2.4 x 10 ³⁰	~1 pb ⁻¹	
	4		156	5 x 10 ¹⁰	2	1.7 x 10 ³¹	~9 pb ⁻¹	2.5
	5a	No crossing angle	156	7 x 10 ¹⁰	2	3.4 x 10 ³¹	~18 pb ⁻¹	3.4
	5b	No crossing angle – pushing bunch intensity	156	1 x 10 ¹¹	2	6.9 x 10 ³¹	~36 pb ⁻¹	4.8
	6	Shift to higher energy: approx 4 weeks	Would aim for physics without crossing angle in the first instance a gentle ramp back up in intensity			e with		
	7	4 – 5 TeV (5 TeV luminosity numbers quoted)	156	7 x 10 ¹⁰	2	4.9 x 10 ³¹	~26 pb ⁻¹	3.4
	8	50 ns – nominal Xing angle	144	7 x 10 ¹⁰	2	4.4 x 10 ³¹	~23 pb ⁻¹	3.1
	9	50 ns	288	7 x 10 ¹⁰	2	8.8 x 10 ³¹	~46 pb ⁻¹	6.2
	10	50 ns	432	7 x 10 ¹⁰	2	1.3 x 10 ³²	~69 pb ⁻¹	9.4
W	11	50 ns	432	9 <u>x 1</u> 0 ¹⁰	2	2.1 x 10 ³²	~110 pb ⁻¹	12

3. Triggers for Top and 4th Generation Quarks

DESY, Sept. 14th-15th, 2009

Top Topology

		Luminosity		
√S	σ_{tt}	10 ³⁴ cm ⁻² s ⁻¹	10 ³² cm ⁻² s ⁻¹	
14 TeV	~850 pb	~8.5 Hz	0.08 Hz	
10 TeV	~400 pb	~4 Hz	0.04 Hz	

tt events caracterized by:

- central leptons (Inl < 2)
- moderate lepton P_T
- moderate Jet E_T & E_T^{miss}
- high jet multiplicity
- for background reduction use b-tagging reconstructed masses M_w, M_t

Final states for detection: -semileptonic: 1 lepton+(=>4) jets -dilepton : 2 leptons+(=>2) jets -multijets: (=>4,5,6) jets

For early measurements final states w/ leptons preferred (can be selected w/ high efficiency) -> use single lepton triggers (mainly)

Measuring Trigger Efficiencies

Use data (not MC generator information) to determine trigger efficiencies

- Single lepton trigger efficiency from "tag-and-probe" methods using events with 2 reconstructed leptons (eg Z) (ATLAS and CMS)
- 2. Single lepton trigger efficiency in top-like (lepton+jets) events selected eg with a multijet trigger -> use eg for efficiency stability monitoring as a function of jet multiplicity (CMS)

Electron Trigger Performance

(*)Offline requirements: reconstructed isolated electron with pT > 20 GeV, miss-ET > 20 GeV, 3 reco. jets with pT > 40 GeV, 4 reco. jets with pT > 20 GeV

Muon Trigger Performance

Muon transverse momentum and pseudo-rapidity distributions after muon identification and isolation requirements (muon selection for top analysis)

Efficiencies for accepting a top analysis selected muons by the HLT-Mu9 trigger as a function of muon p_T and η ,

The efficiency is defined as the number of selected muons that pass the HLT over the total number of selected muons.

Workshop on single top and 4th gen. DESY, Sept. 14th-15th, 2009

MultiJet and HT Trigger Performance

Trigger Performance for Single Top

Trigger Performance for 4th Generation Quarks

4th Generation Quarks production and decay

t'(b') ->b(c) W b'->tW -> bWW

induces jjWW or jjWWWW final states with lepton, jets $p_{T,} H_T$ significantly higher (depending on $M_{t'}$) than for top events

Îf lepton and H_T triggers are highly efficient for top they are also expected to have **high efficiency for 4**th **Generation Quarks**

Workshop on single top and 4th gen. quarks DESY, Sept. 14th-15th, 2009

Marta Felcini, UCD

Top Triggers for Higher Luminosity

At higher luminosities -> Multiple object triggers

Trigger on moderately high P_T objects (10-20 GeV lepton, 30-50 GeV jets) exploiting high object multiplicity to reduce rate while retaining high signal efficiency

Summary and Conclusions

ATLAS and CMS experiments are ready to collect collision data Trigger menus have been developed for a luminosity range likely to be covered in 2009-10

Their performance will be optimized based on measurements with collision data In all cases trigger efficiencies for top events are and will be kept very high (~90%) in view of prompt SM measurements and new physics discoveries

DESY, Sept. 14th-15th, 2009