GPUs for Calibration Processing at XFEL.EU

GPU Round Table - DESY, 6.11.2018

Steffen Hauf (steffen.hauf@xfel.eu)

European XFEL

Overview

Detectors @ European XFEL

Detector Calibration

- Tools we use
- **Online Calibration**
- **GPU-based** Corrections
- With contributions from AGIPD, DSSC and LPD consortia, first users and instruments, DET, CAS, ITDM, CFEL computing....

European XFEL

AGIPD 1M

Steffen Hauf

Figure 8: Liquid scattering pattern of tetrahydrofuran solution of a Cu complex collected with the LPD detector [23,24] at scientific instrument FXE [25](corrected for dark offset). Inset: Average of the azimuthally integrated set of 150 image.

LPD 1M

Detectors: from First Ideas to User Operation – 2006 til 2017

- The European XFEL pulse structure poses strict constraints on detectors (e.g. intensity and time structure)
- No commercial imaging detectors available
- Call for expression of interest launched in 2006
- 3 project proposals were selected with the goal to finally have at least one fast 2D imaging detector

e⁻ Bunch and X-ray Pulse Structure

Call by the:

European Project Team for the X-ray Free-Electron Laser

for:

Expressions of Interest

to:

3

European XFEL Project Team

Call by the:

European Project Team for the X-ray Free-Electron Laser

for:

cio Deutsches Elektronen-Synchrotron DESY in der Helmholtz-Gemeinschaft,

Notkestraße 85

Detectors: from First Ideas to User Operation – 2006 til 2017

- The European XFEL pulse structure poses strict constraints on detectors (e.g. intensity and time structure)
- No commercial imaging detectors available
- Call for expression of interest launched in 2006
- 3 project proposals were selected with the goal to finally have at least one fast 2D imaging detector

-Ray Free-Electron La

XFEL Scientific Instruments

SPB Single Particles, Clusters and Biomolecules and Serial Femtosecond Crystallography

Will determine the structure of single particles, such as atomic clusters, viruses and biomolecules

MID Materials Imaging & Dynamics

Will be able to image and analyse nano-sized devices and materials used in engineering

Femtosecond X-Ray Experiments

Will investigate chemical reactions at the atomic scale in short time scales molecular movies

HED High Energy Density Matter

Will look into some of the most extreme states of matter in the universe, such as the conditions at the center of planets

SQS Small Quantum Systems

Will examine the quantum mechanical properties of atoms and molecules.

Soft X-Ray Coherent Scattering/Spectroscopy

Will determine the structure and properties of large, complex molecules and nano-sized structures.

Hard X-Rays

Soft X-Rays

SCS

FXE

Detectors for the Scientific Instruments

Detectors for the European XFEL

Detector	Specs	Modularity	Gain Switching	Gain Curve
AGIPD	1 Mpixel, 4.5 MHz 352 memory cells 200µm sq. pixels 1-10 ⁴ ph@ 12 keV 3 - 13 keV	16 modules in 2 cols x 8 rows on 4 quadrants	3 gain stages with automatic switching	
LPD	1 Mpixel, 4.5 MHz 508 memory cells 500µm sq. pixels 1-10 ⁵ ph@ 12 keV 5 – 25 keV	16 modules per supermodule (2x8) 16 SM on 4 quadrants	3 gain stages with on front-end selection	The second secon
DSSC	1 Mpixel, 4.5 MHz 800memory cells 204 μ m hex. pixels 1-10 ⁴ ph@ >1keV 0.5 - 6 keV	16 modules in 2 cols x 8 rows on 4 quadrants	Non-linear gain in ASIC (miniSDD), in sensor (DePFET)	900 600

Tools we use

- Karabo the European XFEL Control and Analysis Framework
 - DAQ, online corrections, multi-module combination, and user exposure are all implemented in this framework. See e.g. Kuster et al.: Detectors and Calibration Concept for the European XFEL; Fangohr et al.: Data Analysis Support at European XFEL
 - Detector Control is implemented in Karabo, working on top of consortiaprovided libraries
 - Karabo now follows a 2-4 week release schedule, with bug fixes made quickly available
 - Many improvements in responsiveness during last 6 months as mandated with ever growing installations
 - DAQ and calibration and detector control follow relevant updates in these release cycles, leading to stability and performance improvements
 - Beam-time like conditions are a must for proper evaluation
- IPython and project Jupyter
 - For offline analysis and characterization
 - For transparency of what we do

ZMQ

For exposing data to users via a well-established path

European XFEL

Online Calibration

- Has seen extensive use at both instruments for rapid feedback
- Feeds user-provided online tools via a Karabo-Bridge*
- GPU algorithms available if data rates require

*H. Fangohr et al., "Data Analysis Support in Karabo at European XFEL", (ICALEPCS'17), Barcelona, Spain, Oct. 2017

Corrected Data Preview SPLITTER device rates b 🗯 🖬 🛍 🖶 🔀 Hz 2.83 1.84 Hz 2.36 Hz 2.17 4.11 Hz 1.43 1.88 Hz 4.50 Hz 2.42 5.05 HZ 2.9 Hz 4.35 2.90 XX XX 2 ~ 🗸 🗶 X AGIPD LPD Gain evaluation Х Х Х Х Offset correction Х Х Relative gain correction Bad pixels G/O/N G/O/N KRB devices for MPIX 103 69

Corrected online preview for AGIPD

Online Calibration

- Has seen extensive use at both instruments for rapid feedback
- Feeds user-provided online tools via a Karabo-Bridge
- GPU algorithms available if data rates require
- Online processing is module parallel, chunks size always one train
 - Splitter" devices as entry points to pipelines from → pass every nth train, safe guard DAQ by dropping on slowness
 - "Combiner" device as exit points:
 - Combine modules into stack: [pulse, module, x y]
 - Combine modules into image: [pulse, x', y']

Configurable number of modules to "wait" for

Corrected online preview for LPD

Online Calibration

- Has seen extensive use at both instruments for rapid feedback
- Feeds user-provided online tools via a Karabo-Bridge
- GPU algorithms available if data rates require
- Online processing is module parallel, chunks size always one train
 - "Splitter" devices as entry points to pipelines from → pass every nth train, safe guard DAQ by dropping on slowness
 - Combiner" device as exit points:
 - Combine modules into stack: [pulse, module, x y]
 - Combine modules into image: [pulse, x', y']

- Needs to combine 16 data streams @2 Gb/s tot.
- Can optionally mask BP
- Configurable number of modules to "wait" for

Corrected online preview for AGIPD

Online Calibration

Applications so far:

 Feeds user-provided online tools via a Karabo-Bridge device (T. Michelat)
 Usually combiner in appender mode
 Connects to CAS-provided ZMQ bridge
 3-5 Hz rate at 128 cells, 256 cells at 1Hz
 2s latency with 256 memory cells

- Latency includes:
 - Data acquisition
- Data formatting on DAQ
- Data forwarding to pipelines
- Data selection at pipeline entry points:
 - ► Every nth train
 - Cells containing FEL pules
- Combining of 16 streams from modules
- Data advertising on ZMQ

Python-based Calibration and Data Analysis Suite – Using GPUs via pyCUDA*

*Klöckner, Andreas, et al. "PyCUDA and PyOpenCL: A scripting-based approach to GPU run time code generation." *Parallel Computing* 38.3 (2012): 157-174.

Steffen Hauf

- Basic correction algorithms usually of form $y = m\chi + \delta$
 - b: pedestal/offset
 - m: gain factor

However, values are per-pixel, memory, cell and gain stage, so a single detector module requires GB of calibration constants. No strict ordering of memory cells in a chunk of data can be assumed.

• Threshold pixel values to define separate output array:

$$\begin{aligned} \chi < \mathcal{T}_1 & \rightarrow y = 0, \\ \mathcal{T}_1 \le \chi < \mathcal{T}_2 & \rightarrow y = 1, \\ \chi \ge \mathcal{T}_1 & \rightarrow y = 2 \end{aligned}$$

Used for gain bit evaluation of AGIPD

European XFEL

Python-based Calibration and Data Analysis Suite – Using GPUs via pyCUDA*

*Klöckner, Andreas, et al. "PyCUDA and PyOpenCL: A scripting-based approach to GPU run time code generation." *Parallel Computing* 38.3 (2012): 157-174.

Allows for instance to run-time optimize GPU-kernels, e.g. the sorting networks used for common-mode computation

....

Commonmode approach based on a sorting network using Batcher's Odd-Even Merge Sort algorithm. Can be tuned to parallelize on a warp with (32 threads).

```
def oddeven_merge(lo, hi, r):
    step = r * 2
    if step < hi - lo:
        for i in oddeven_merge(lo, hi, step):
            yield i
        for i in oddeven_merge(lo + r, hi, step):
            yield i
        for i in [(i, i + r) for i in range(lo + r, hi - r, step)]:
            yield i
    else:
        yield (lo, lo + r)
    European XFEL
</pre>
```

Python-based Calibration and Data Analysis Suite – Using GPUs via pyCUDA*

*Klöckner, Andreas, et al. "PyCUDA and PyOpenCL: A scripting-based approach to GPU run time code generation." *Parallel Computing* 38.3 (2012): 157-174.

Allows for instance to run-time optimize GPU-kernels, e.g. the sorting networks used for common-mode computation

Performance-optimization for correction and calibration routines \rightarrow near real-time performance seams possible

GPU-based for "near-realtime" corrections:

Offset, common-mode, split-event, statistics)

(scaled from Nvidia K2200 to K40, requires approx. 1 GPU per 10G line)

	Detector	Data size (pixel \times frames)	Processing time (ms)
Corresponds to one 10G line	AGIPD DSSC LPD	$\begin{array}{c} 128\times512\times352\\ 128\times512\times512^{a}\\ 256\times256\times512 \end{array}$	76.6 106.1 103.6

^{*a*}Limited to 512 frames by the train–builder hardware, the detector head can store up to 800 frames.

European XFEL

GPUs for Detector Calibration at

Python-bas∉ GPUs via py_

GPUs for Detector Calibration at

Python-base GPUs via py_

Performance-optimization for correction and calibration routines \rightarrow near real-time performance seams possible

GPU-based for "near-realtime" corrections:

Offset, common-mode, split-event, statistics)

(scaled from Nvidia K2200 to K40, requires approx. 1 GPU per 10G line)

Calibration constants on GPU amount to ~2-4GB in size per module. Memory thus can be limiting factor.

^{*a*}Limited to 512 frames by the train–builder hardware, the detector head can store up to 800 frames.

Where Karabo comes into play

Chose Karabo p2p for distributed computing
Allows for native integration of Karabo-data formats
Allows for easy integration into Karabo-GUI
Direct access to control-system where needed, e.g. detector operating conditions

Where Karabo comes into play

Chose Karabo p2p for distributed computing
Allows for native integration of Karabo-data formats
Allows for easy integration into Karabo-GUI
Direct access to control-system where needed, e.g. detector operating conditions

Keep all GPU-related processing for one module on the same host and avoid copying data

Where Karabo comes into play

Chose Karabo p2p for distributed computing
Allows for native integration of Karabo-data formats
Allows for easy integration into Karabo-GUI
Direct access to control-system where needed, e.g. detector operating conditions

Use IPC handles to pass GPU data locations over python process boundaries.

- Works well, but:
- Documentation could be better concerning how to deallocate properly.

European XFEL

Keep all GPU-related

copying data

processing for one module

on the same host and avoid

© nvidia. CUDA.

IP[y]: IP[y]:

Summary

- GPUs are in production use at European XFEL for online calibration of data from our MHz imaging rate detectors
 - Up to 256 Mpixel images/s achieved (250 MB/s on each GPU, 20% peak utilization)
 - Bottleneck not on GPU but in data combining, as a single host at some point has to handle 2GB/s or more in the future
 - Reasonable performance for now, but continuous optimization
 - Currently simple configurable pipeline of linear equations and thresholding, but more evolved corrections can be deployed as needed (common mode, split event correction).
 - PyCuda makes CUDA GPU integration easy within our Python framework (Karabo)

Next steps:

- More throughput (always on the wish list)
- Add characterization routines: offset, noise, thresholds → implemented on GPU and tested offline, but interfaces in online environment need to be integrated
- Smaller pixel detectors are now coming online (mostly 10Hz), which can profit from GPU-base split-event corrections
- Wish list
 - Better documentation and examples on CUDA IPC
 - Tutorials on RDMA with CUDA via Infiniband

🔜 💻 European XFEL