ML@Bellell@DESY.

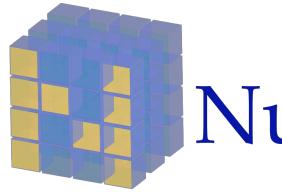
November 6th 2018, GPU Computing & Machine Learning @ DESY Torben Ferber (torben.ferber@desy.de), Simon Wehle

Belle II in Japan

- Intensity frontier flagship experiment: 30kHz event rate.
- 750+ researchers from 30 countries. 100+ from Germany, ~20 from DESY (incl. 1 Helmholtz YIG and 1 Helmholtz W2).
- Precision physics and searches for (very) rare decays including Dark Matter.

Data formats at Belle II

- - Multiple ML packages (XGBoost, TMVA, Tensorflow) interfaced.
- User analysis (Python) high level output are (multiple) flat ROOT files. HDF support is planned.



• Event reconstruction (C++, including online HLT) is performed on ROOT data.

 Final offline analysis either based on ROOT (C Macros) or Pandas/Numpy (via root_pandas, root_numpy or uproot). Strong trend towards python at DESY.

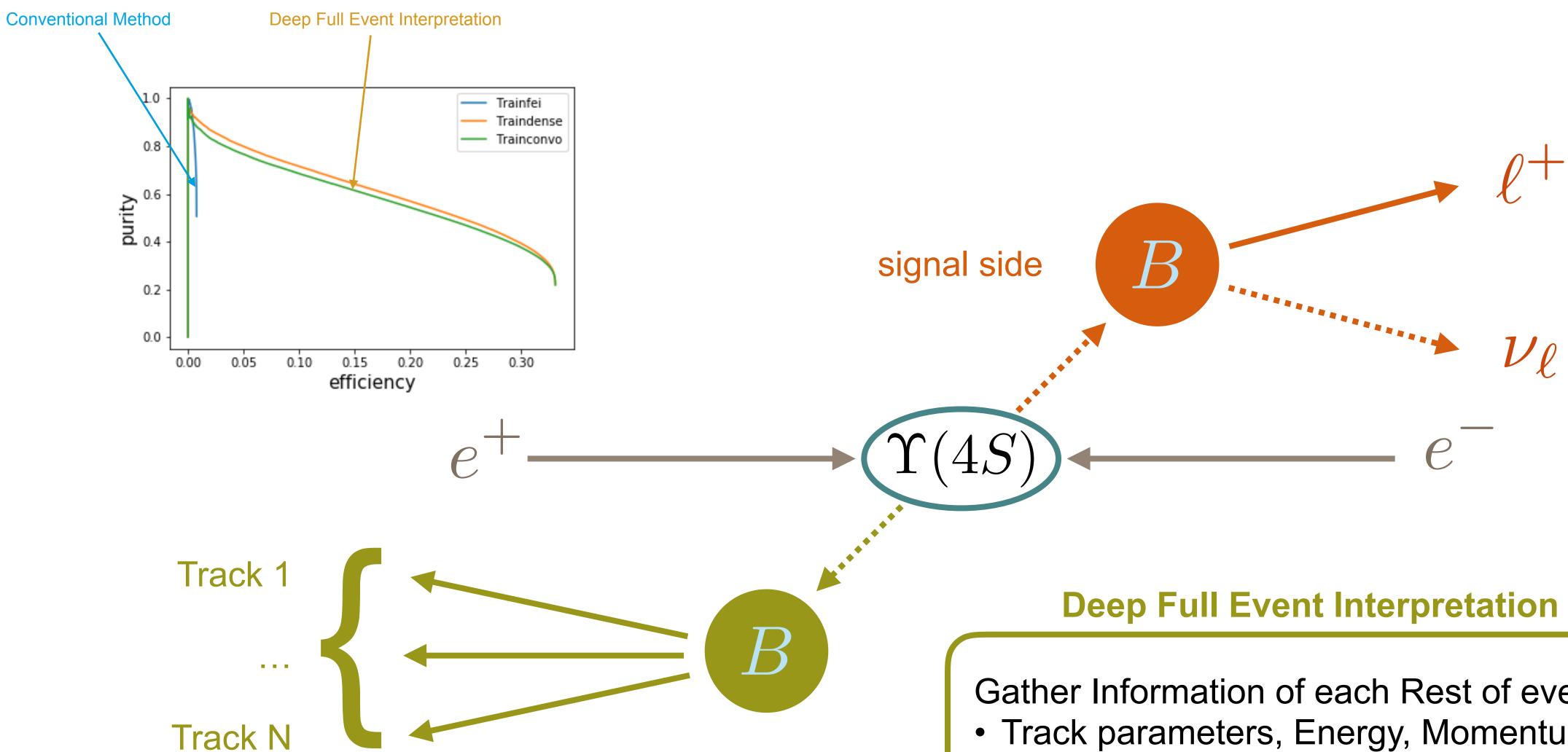
NumPy



Overview Machine Learning at Belle II at DESY

- Physics analysis (NNs, BDTs)
 - Full Event Interpretation (FEI)
 - Adversarial approaches (bump hunts \leftrightarrow true mass, precision physics \leftrightarrow correlations)
- Electromagnetic calorimeter (NNs)
 - Energy and **position reconstruction**
 - Charged and Neutral Particle Identification (PID)
 - Calibration
 - Seedless clustering
 - Photon direction/displaced photons
- Tracking (BDTs)

Full Event Interpretation (FEI)

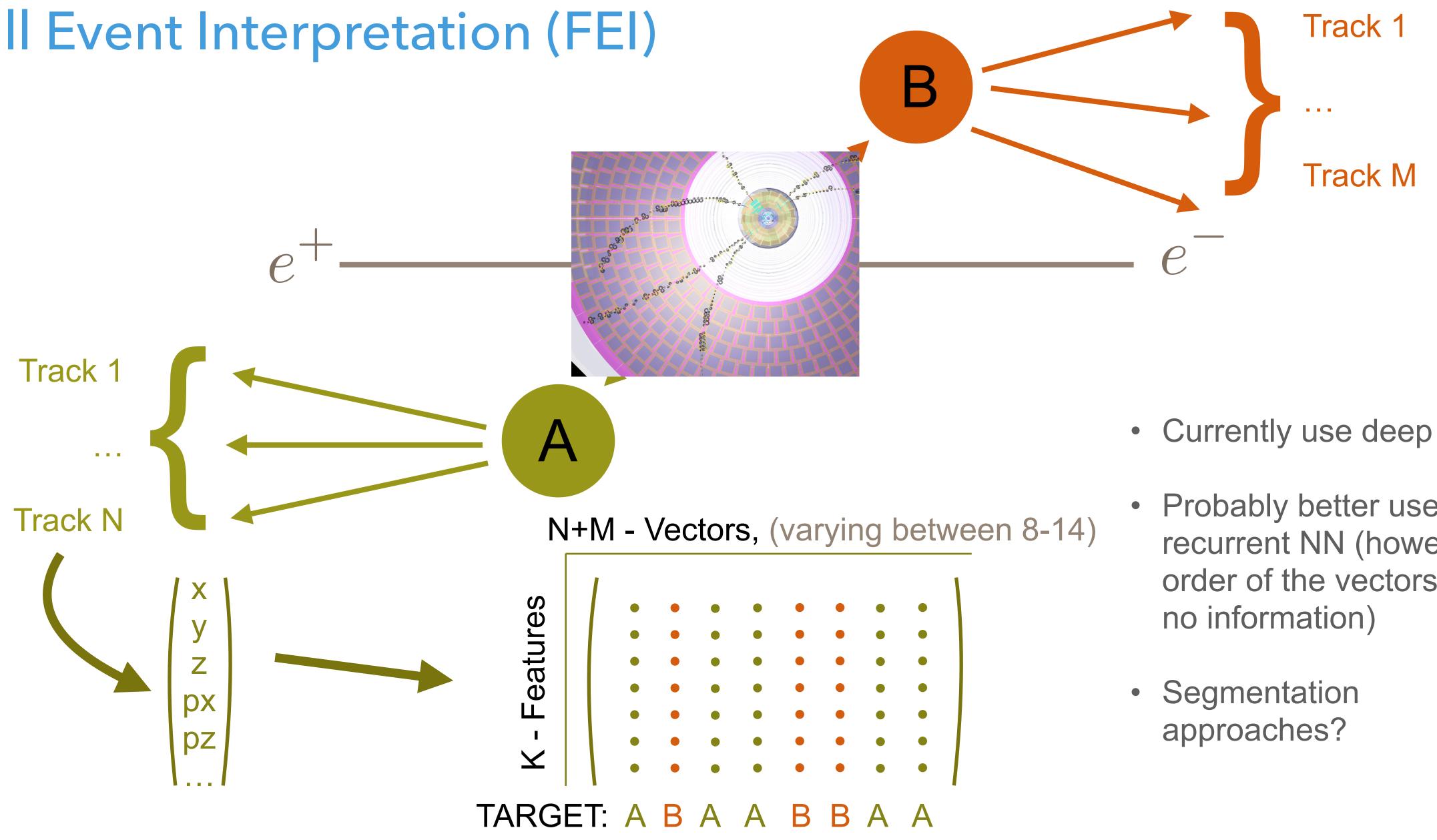


Gather Information of each Rest of event Track

- Track parameters, Energy, Momentum
- Particle Identification Information

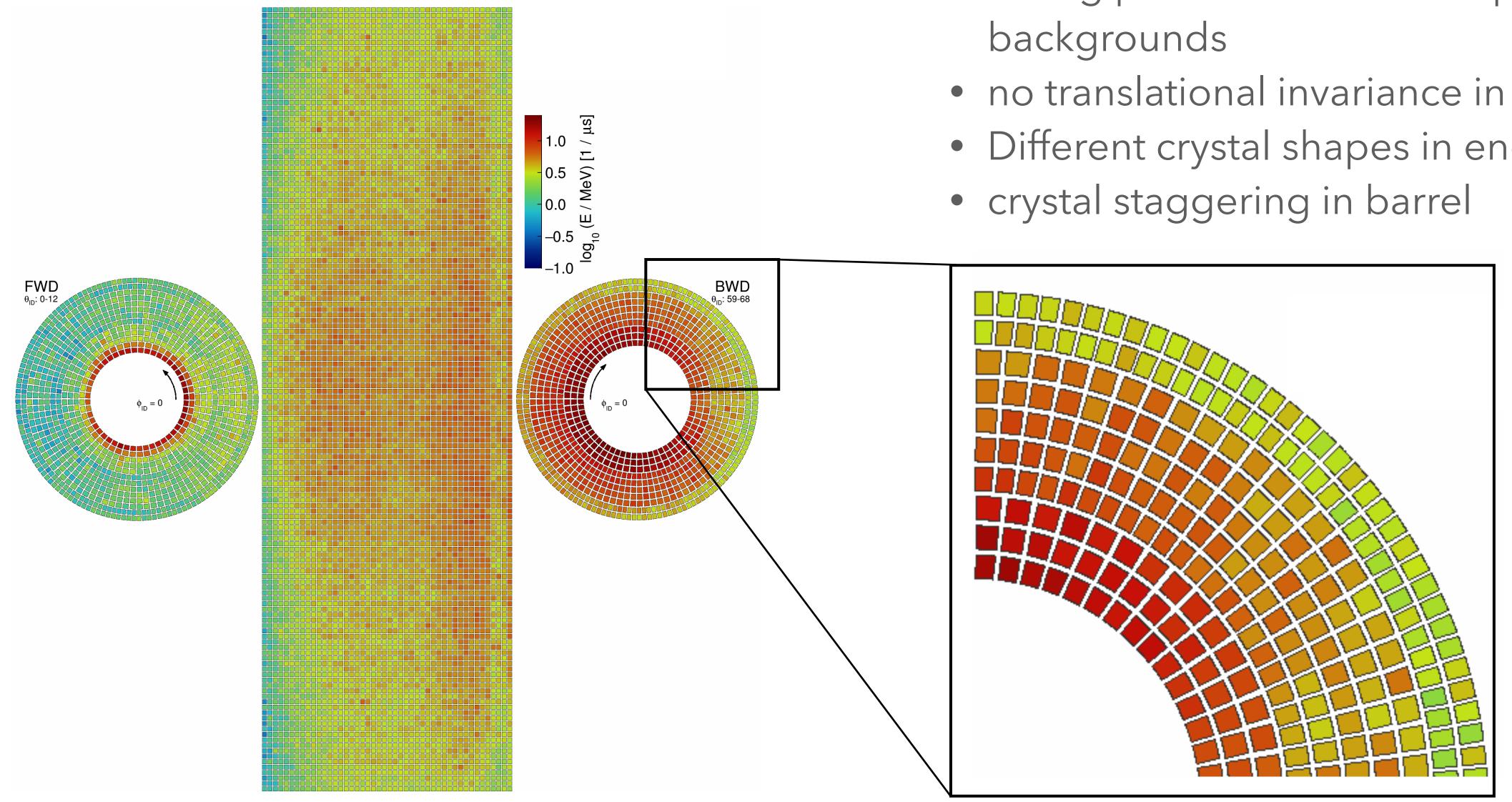
5

Full Event Interpretation (FEI)



- Currently use deep FC NN
- Probably better use recurrent NN (however order of the vectors has

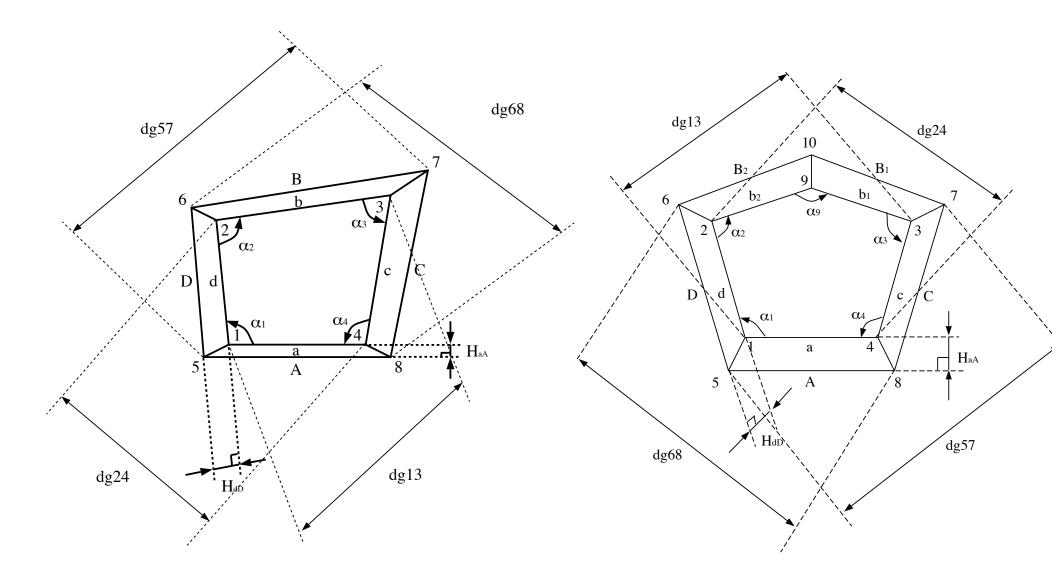
Electromagnetic calorimeter (ECL)

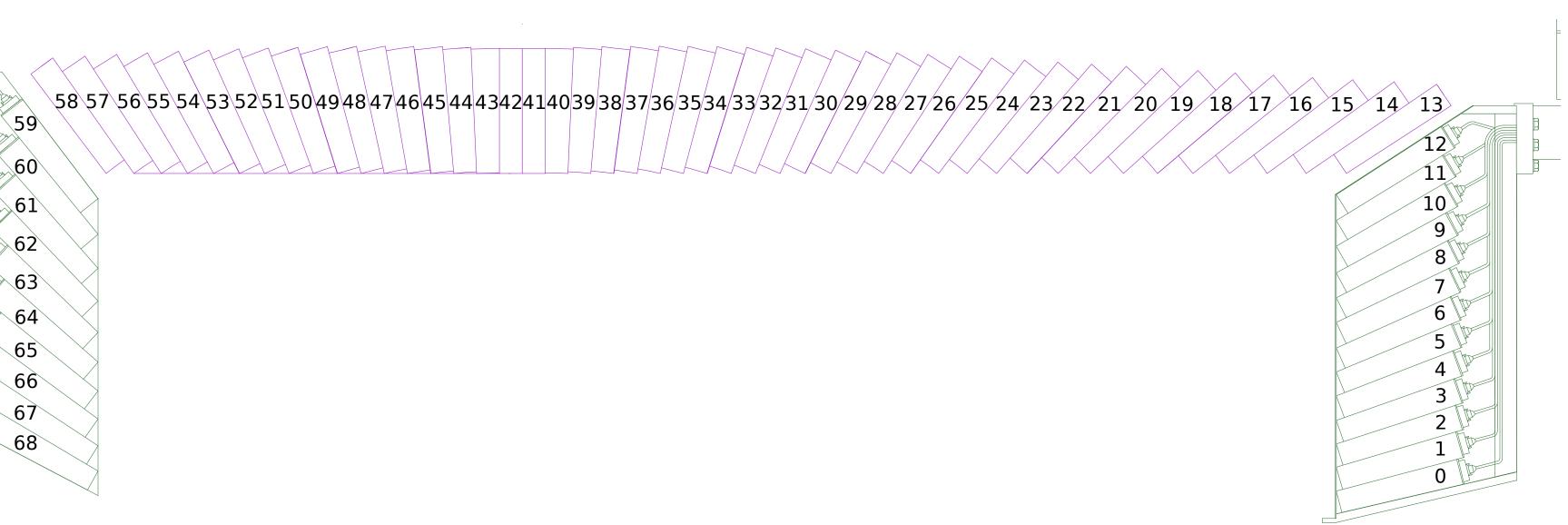


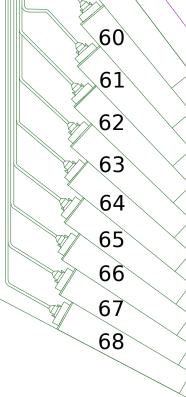
Challenges:

- strong position and time dependent
- no translational invariance in endcaps
- Different crystal shapes in endcaps

Electromagnetic calorimeter (ECL)





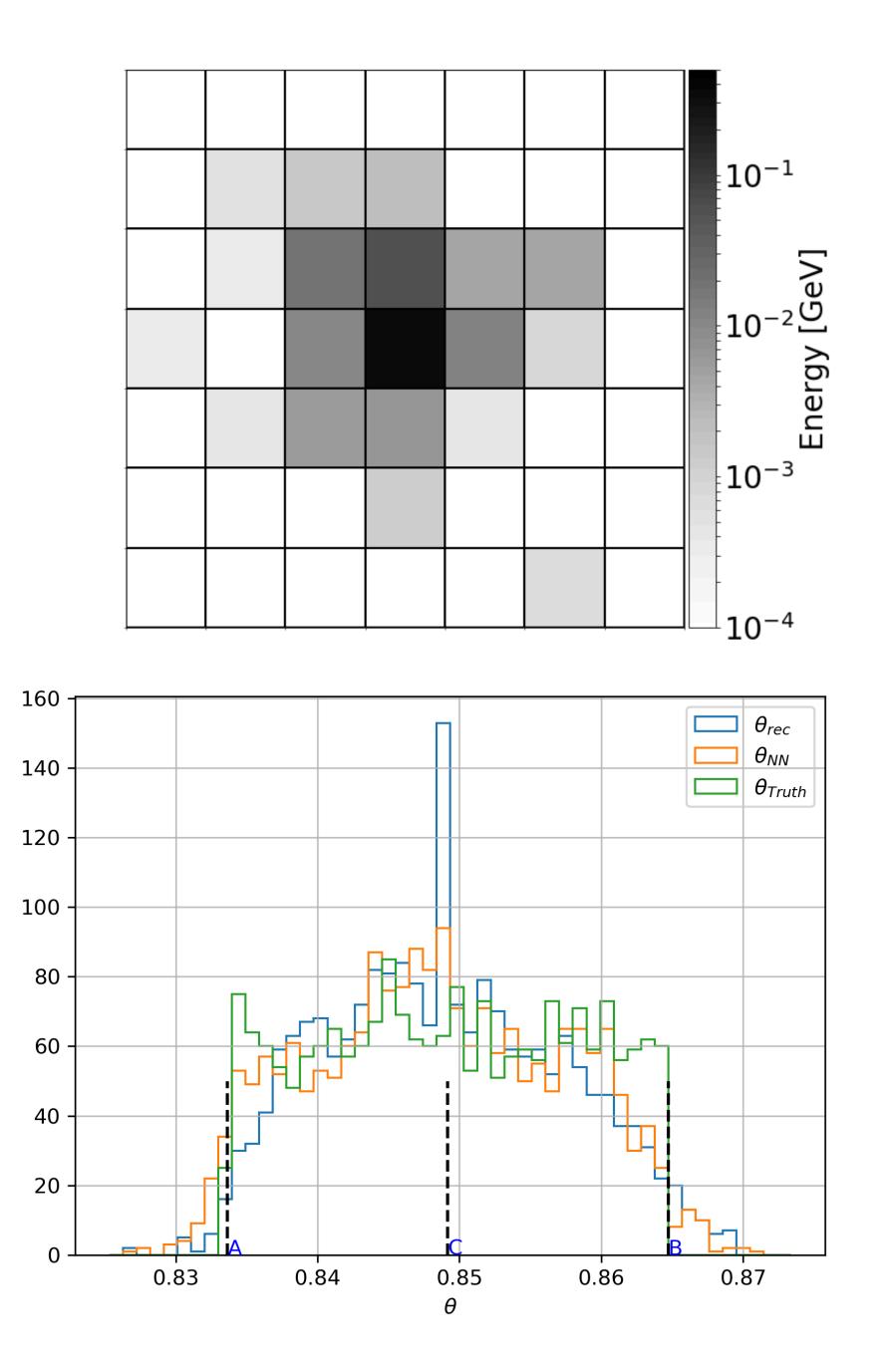


Challenges:

- strong position and time dependent backgrounds
- no translational invariance in endcaps
- Different crystal shapes in endcaps
- crystal staggering in barrel

ECL Photon position reconstruction

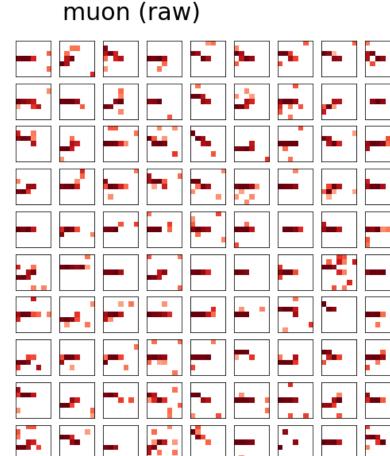
- Crystal calorimeter: most information contained in central crystal.
- Problem: Very sparse information leads to strong bias towards towards central crystal in non-ML approaches.
- Current ML approach uses "brute force" input $5 \times 5 \times 3$ (energy, θ , Φ) and two targets θ_{Truth} and Φ_{Truth} . Barrel only. FC.
- Move to generalized local position + bias reconstruction next.

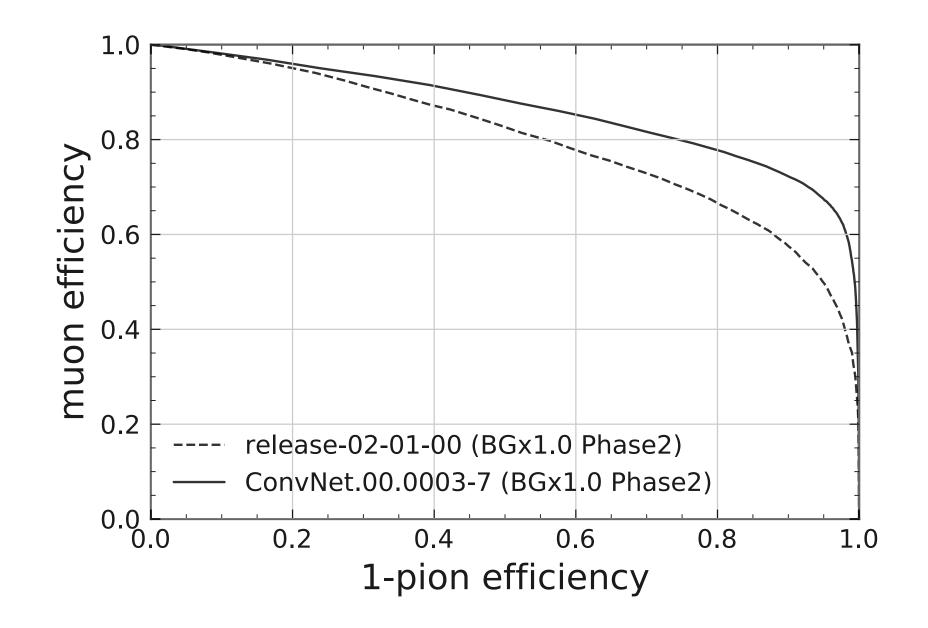


ECL Low pt charged particle identification

- Low pt tracks will not reach the outer detector.
- Seedless clustering around extrapolated track impact point.
- **Preprocessing** to correct charge asymmetries and background fluctuations.
- Image recognition using convolutional networks.
- Future: Add non-image information in FC layers, use asymmetric images, use high dimensional image information (7×7×3..9) from digitized waveforms.

pion (raw)





ECL cluster shape calibration

- engineered shower shape variables per shower.
 - Used to separate photons and neutral hadrons.

 - instead, before further analysis steps.

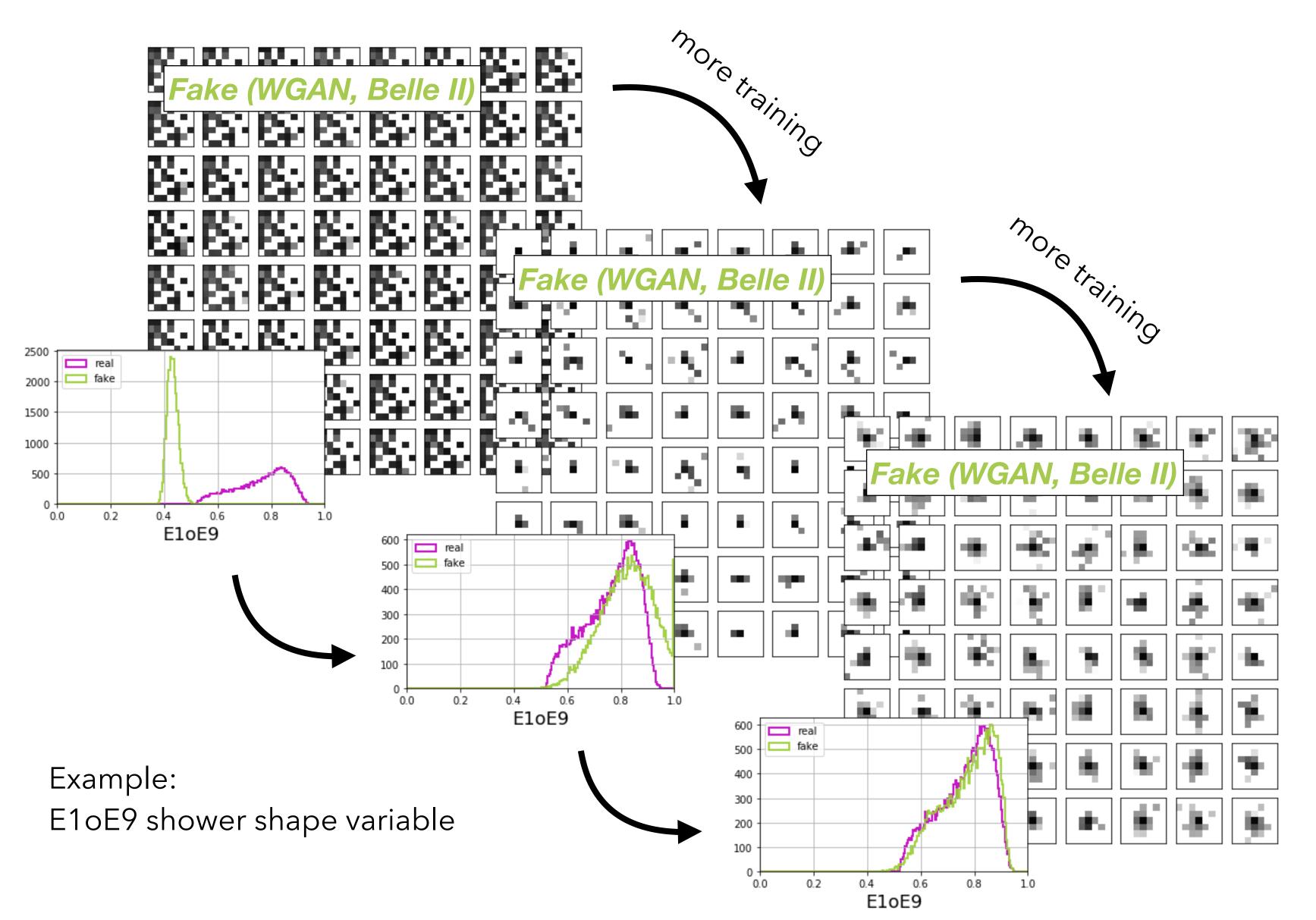
• High level user analysis is performed on reduced datasets with several expert-

11

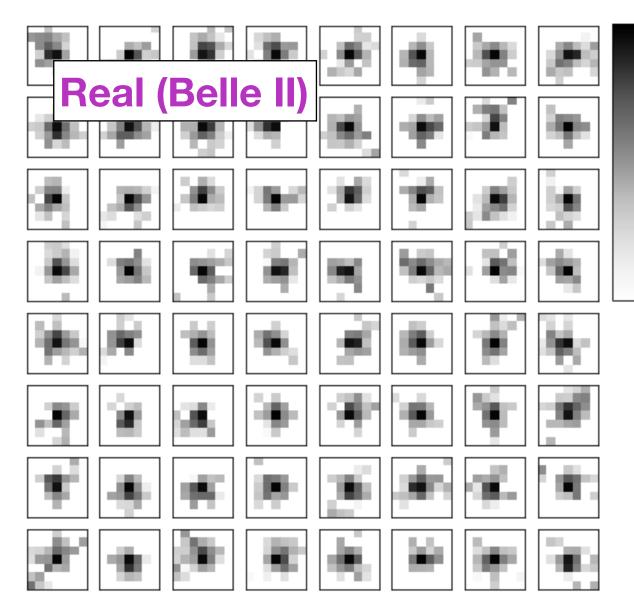
 Differences in data and simulation of shower shapes reduces experimental precision by introducing multiple ad-hoc corrections (one per shower shape).

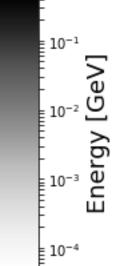
• Under study: Use Wasserstein refiner networks to calibrate shower images

ECL cluster shape calibration

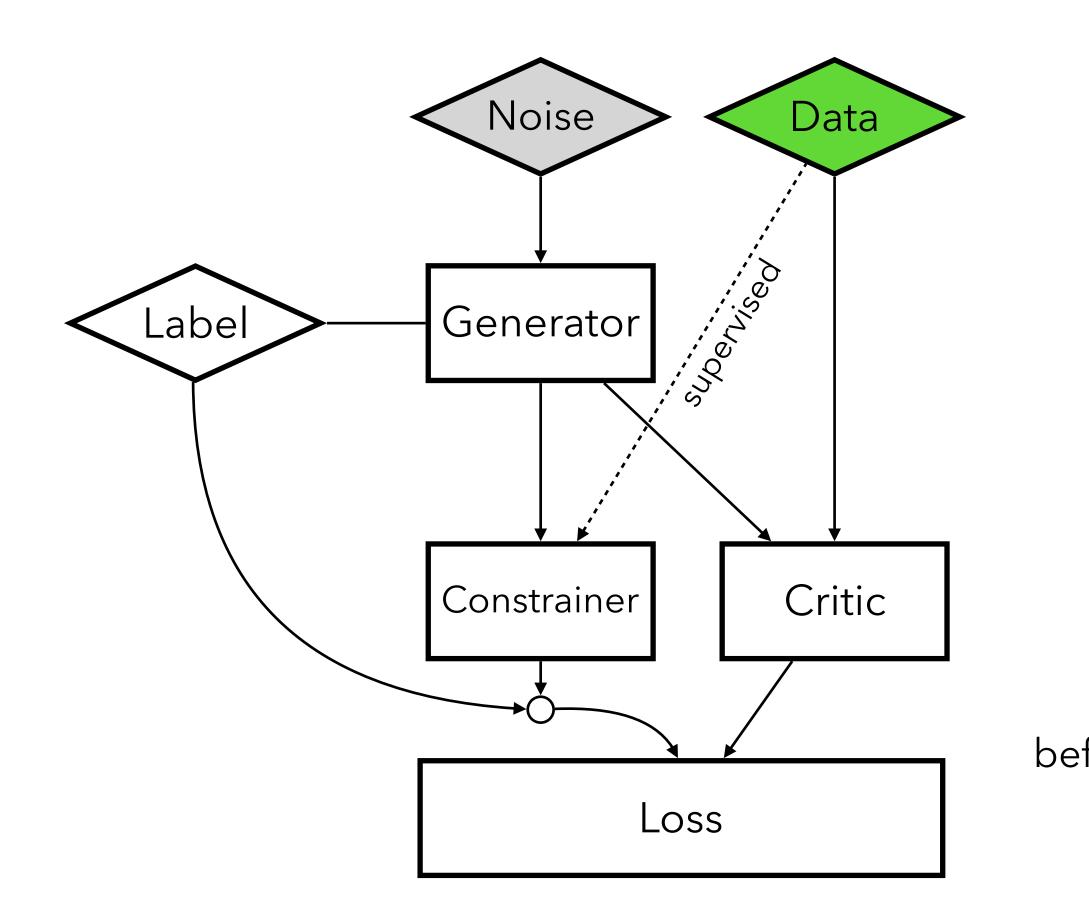


Semi-supervised learning: Wasserstein GAN learns to create 'fake' images that look like real Belle II images.

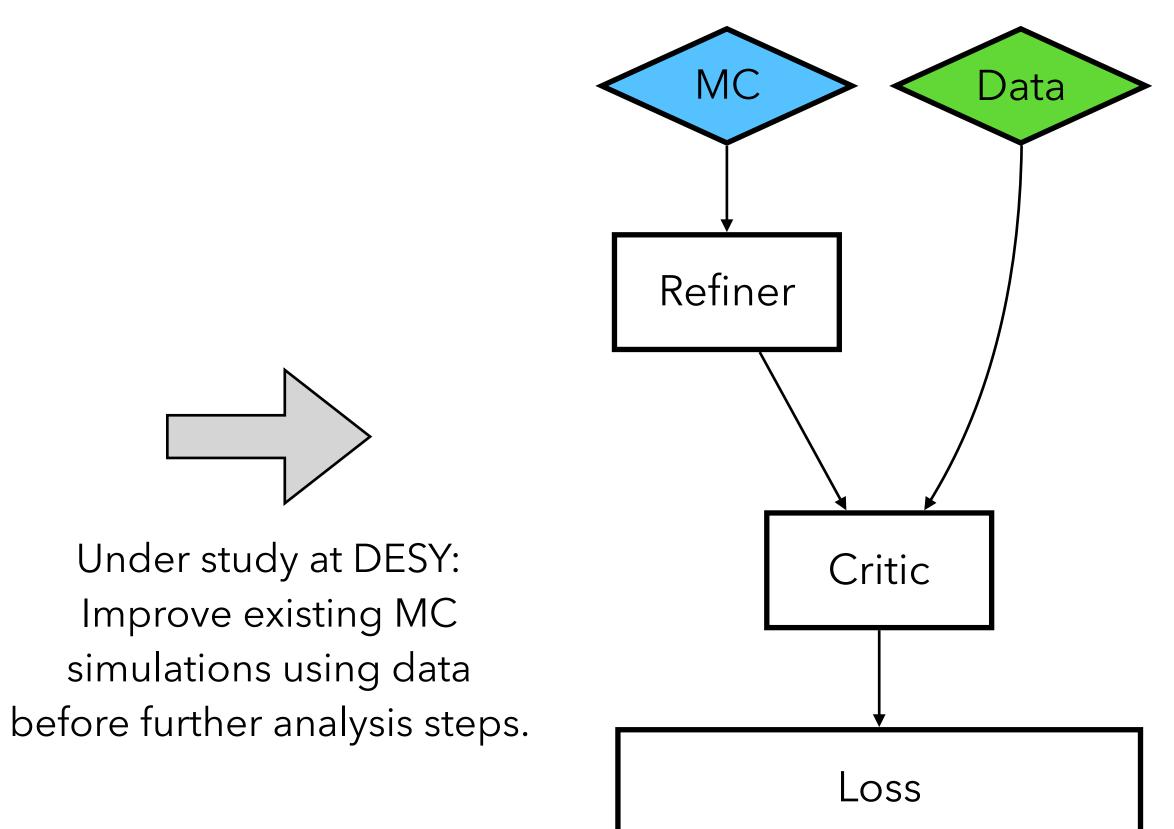




ECL cluster shape calibration



Wasserstein Generative Adversarial Network: **WGAN** (with supervised auxiliary constrainers: AC-WGAN)



Wasserstein Refiner Network

Erdmann et al (<u>https://arxiv.org/pdf/1802.03325.pdf</u>)

13

Challenges/random thoughts

- and optimized.
- Ultimately we need to run ML where our data is \rightarrow HTCondor.
- Precision calibration using ML is not used in our field yet: Synergy at DESY?
- Best practices to address systematic uncertainties?

Different tasks (development, tuning, finalization, application) require different tools (Maxwell, HTCondor, local resources). Workflow needs to be understood

• Belle II calorimeter image problems are not (few images) × (large image size) but (many images*) × (small image size). Sill learning to utilize full GPU benefits.

* about 3 million cluster images per second

Summary

- Not covered here: Most Belle II analyses use ML during high-level analysis.
- Strong trends towards fully python-based analyses at Belle II @ DESY.
- ML focus at Belle II @ DESY:
 - Full Event Interpretation
 - ECL reconstruction and particle identification.

Contact

DESY.

Deutsches Elektronen Synchrotron <u>www.desy.de</u> Torben Ferber <u>torben.ferber@desy.de</u>