
Belle

ML @ Belle II @ DESY.
November 6th 2018, GPU Computing & Machine Learning @ DESY 

Torben Ferber (torben.ferber@desy.de), Simon Wehle



Use case @ Belle II (Torben Ferber) �2

Belle II in Japan
• Intensity frontier flagship 

experiment: 30kHz event rate. 

• 750+ researchers from 30 
countries. 100+ from Germany, 
~20 from DESY  (incl. 1 Helmholtz 
YIG and 1 Helmholtz W2). 

• Precision physics and searches for 
(very) rare decays including Dark 
Matter.
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Data formats at Belle II

• Event reconstruction (C++, including online HLT) is performed on ROOT data. 

• Multiple ML packages (XGBoost, TMVA, Tensorflow) interfaced. 

• User analysis (Python) high level output are (multiple) flat ROOT files. HDF 
support is planned. 

• Final offline analysis either based on ROOT (C Macros) or Pandas/Numpy (via 
root_pandas, root_numpy or uproot). Strong trend towards python at DESY.
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Overview Machine Learning at Belle II at DESY
• Physics analysis (NNs, BDTs) 

• Full Event Interpretation (FEI) 

• Adversarial approaches (bump hunts ↔ true mass, precision physics ↔ correlations) 

• Electromagnetic calorimeter (NNs) 

• Energy and position reconstruction 

• Charged and Neutral Particle Identification (PID) 

• Calibration 

• Seedless clustering  

• Photon direction/displaced photons  

• Tracking (BDTs)
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Full Event Interpretation (FEI)
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Full Event Interpretation (FEI)
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Electromagnetic calorimeter (ECL) Challenges: 
• strong position and time dependent 

backgrounds  
• no translational invariance in endcaps 
• Different crystal shapes in endcaps 
• crystal staggering in barrel
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Electromagnetic calorimeter (ECL)
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Challenges: 
• strong position and time dependent 

backgrounds  
• no translational invariance in endcaps 
• Different crystal shapes in endcaps 
• crystal staggering in barrel
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ECL Photon position reconstruction

• Crystal calorimeter: most information 
contained in central crystal. 

• Problem: Very sparse information leads to 
strong bias towards towards central 
crystal in non-ML approaches. 

• Current ML approach uses “brute force” 
input 5×5×3 (energy, θ, Φ) and two 
targets θTruth and ΦTruth. Barrel only. FC. 

• Move to generalized local position + bias 
reconstruction next.
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ECL Low pt charged particle identification
• Low pt tracks will not reach the outer detector. 

• Seedless clustering around extrapolated track 
impact point. 

• Preprocessing to correct charge asymmetries 
and background fluctuations. 

• Image recognition using convolutional 
networks. 

• Future: Add non-image information in FC 
layers, use asymmetric images, use high 
dimensional image information (7×7×3..9) 
from digitized waveforms.
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ECL cluster shape calibration

• High level user analysis is performed on reduced datasets with several expert-
engineered shower shape variables per shower. 

• Used to separate photons and neutral hadrons. 

• Differences in data and simulation of shower shapes reduces experimental 
precision by introducing multiple ad-hoc corrections (one per shower shape). 

• Under study: Use Wasserstein refiner networks to calibrate shower images 
instead, before further analysis steps.
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ECL cluster shape calibration

Semi-supervised learning: 
Wasserstein GAN learns to 
create ‘fake’ images that 
look like real Belle II 
images.

Fake (WGAN, Belle II)

more training

more training

Real (Belle II)

Fake (WGAN, Belle II)

Fake (WGAN, Belle II)

Example:  
E1oE9 shower shape variable
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ECL cluster shape calibration

Erdmann et al (https://arxiv.org/pdf/1802.03325.pdf)

Wasserstein Generative Adversarial Network: WGAN  
(with supervised auxiliary constrainers: AC-WGAN)

Wasserstein Refiner Network 
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Under study at DESY: 
Improve existing MC 

simulations using data 
before further analysis steps.

https://arxiv.org/pdf/1802.03325.pdf
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Challenges/random thoughts

• Different tasks (development, tuning, finalization, application) require different 
tools (Maxwell, HTCondor, local resources). Workflow needs to be understood 
and optimized. 

• Ultimately we need to run ML where our data is → HTCondor. 

• Belle II calorimeter image problems are not (few images) × (large image size) 
but (many images*) × (small image size). Sill learning to utilize full GPU benefits. 

• Precision calibration using ML is not used in our field yet: Synergy at DESY? 

• Best practices to address systematic uncertainties?
* about 3 million cluster images per second
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Summary

• Not covered here: Most Belle II analyses use ML during high-level analysis. 

• Strong trends towards fully python-based analyses at Belle II @ DESY. 

• ML focus at Belle II @ DESY: 

• Full Event Interpretation 

• ECL reconstruction and particle identification.
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