Compton events in simulation

Oleksandr Borysov

LUXE Meeting October 18, 2018

Input Parameters

```
Cross section calculation
// Laser variables:
Elaser 1.5498E-9 // photon energy in GeV (800nm -> 1.5498eV)
Epulse 2.5e6
alpha 0.3
sigmaxy 10.
sigmaz 0.025

// energy per laser pulse in uJ (should be 5E6)
// crossing angle in radian
// transverse size of pulse in um(round profile assumed!)
 nbxflip 2
              // number of BXs between flips of laser helicity
 // // Beam variables:
nelectron 6.25E+9 // number of electrons per bunch XFEL according to Matthew's talk
nbunch 1 // number of bunches per train
ttrain 1.0e3 // duration of bunch train in ms (3250 bunches * 200ns bunch spacing)
// XFEL according to Mathew's talk
esigmax 0.030 // horizontal beam size in mm
esigmay 0.030 // vertical beam size in mm
esigmaz 0.334 // longitudinal beam size in ps (XFEL sigma_z = 20 um; t = sigma_z / 300 um * ps)
                                                          Number of events
                    Luminosity
```

$$\mathcal{L} = \frac{N_1 N_2 f N_b}{2\pi \sqrt{\sigma_{1x}^2 + \sigma_{2x}^2} \sqrt{\sigma_{2y}^2 + \sigma_{2y}^2}} \cdot S$$

$$S = \frac{1}{\sqrt{1 + (\frac{\sigma_s}{\sigma_x} \tan \frac{\phi}{2})^2}} \approx \frac{1}{\sqrt{1 + (\frac{\sigma_s}{\sigma_x} \frac{\phi}{2})^2}}$$

Number of Compton events

Dependence on beam parameters

E_pulse, µJ	Crossing angle, rad	Laser σ _{xy} , μ <u>m</u>	Laser g _{z,} <u>ps</u>	N Electrons	Electron g _x , mm	Electron g_{y} , mm	Electron g_z , ps
3.5*10^6	0.3	10	0.035	6.25E+09	0.005	0.005	0.08
2.5*10^6	0.17	5	0.02		0.001	0.001	0.05
35.0*10^6	0.35	50	0.04		0.01	0.01	0.1

Nominal values

Scan range

Number of Compton events

- In present implementation, for the laser $\sigma_x = \sigma_y = \sigma_{xy}$, only one parameter describes transverse size;
- This explains stronger dependence of the number of events;
- Beam displacement is not implemented.

Electrons after interaction

Number of interactions is reduced to speed up calculations

Integrated over azimuthal angle

Test of Electron Transport Performance

Energy vs Position of electron in detector

Study of the data generated by Anthony

<u>Implemented processes:</u>

- HICS (High intensity Compton scattering)
- OPPP (one photon pair production)

Together, in different time steps, these make the two step trident process.

Future steps from theory side:

- Implementation of one step trident process (with virtual intermediate photon), this will constitute an extra source of positrons;
- Effect of finite pulse length.

e⁻, γ, e⁺ spectra for phases 0 and 1

Histograms are normalized to one event and bin width.

Particles statistic in selected energy range

Data	Phase_0	Phase_1
Number of electrons (for 1 <e<6 gev)<="" td=""><td>180000</td><td>240000</td></e<6>	180000	240000
Number of electrons (for 6 <e<16 gev)<="" td=""><td>2.72E+09</td><td>2.84E+09</td></e<16>	2.72E+09	2.84E+09
Number of photons (for E>1 GeV)	3.93E+09	4.26E+09
Number of positrons (for E>1 GeV)	0.0119	0.0441
Position of electron with E = 1 GeV (m)		8.93458
Position of positron with $E = 1 \text{ GeV}$ (m)		-8.86167

Position of e⁻, e⁺ in detector

Position of the particles can be determined using energy scan.

Position of electron with E = 1 GeV: 8.89636 m

Position of positron with E = 1 GeV: -8.89948 m

Position for $E = 17.5 \text{ GeV}: \pm 35.42 \text{ cm}$

Position of electron with E = 1 GeV: 0.465 m

Position of positron with E = 1 GeV: -0.465 m

Position for $E = 17.5 \text{ GeV}: \pm 2.24 \text{ cm}$

Summary and plans

- The number of Compton events per bunch crossing with nominal e- beam and laser pulse is ~ 5.1E9.
- It looks barely possible to measure the whole energy range of e-/e+ with a single settings for one rectangular magnet:
 - Change the field and scan the energy;
 - V-shape magnet?
 - Use more than one magnet?
- Number of positrons produced in one collision is 0.01 and 0.04 for phase 0 (0.35J) and phase 1 (3.5J). The energy ranges from 0.4 GeV up to 8 GeV. More statistics might be helpful.
- The implementation of one step trident process is in progress.
- Finalize the code to interface output from generator with possibility to configure program execution via steering file.
- Consider implementation of detector models for fast simulation.

