

dCache in a Cloud Tigran Mkrtchyan

Three problems to solve

- Data never fits into a single server
 - Multiple servers
 - Off-load to tape
- Growing number of clients
 - Main frame vs. Linux cluster
- We want our own HW/OS selection
 - Better offers
 - Local expertise

Four main components

- DOOR
 - user entry points (NFS, FTP, DCAP, XROOT)
- POOL
 - data storage nodes, talk all protocols
- Namespace
 - metadata DB, POSIX layer
- PoolManager
 - request distribution unit

dCache in the cloud | Tigran Mkrtchyan | 10/24/18 | Page 4

All components are **CELL**s : they are independent and can interact with each other (send messages).

Grouping CELLs

Grouping CELLs

Grouping CELLs

Internal Communication

- Inter-cell communication
 - Message passing
 - Routing
- ZooKeeper
 - Service discovery
 - Coordination
 - Configuration

Cell messaging 101

- Star like topology
- Selected node configured as a hub called CORE domain

- All communication goes through CORE domains
- Other domains called **SATELLITE**

Cell messaging 101

- Star like topology
- Selected node configured as a hub called CORE domain
- All communication goes through CORE domains

dCache.org 🔈

• Multiple CORE domains make communication fault tolerant

Multi-Site deployment

dCache in the cloud | Tigran Mkrtchyan | 10/24/18 | Page 16

- Distribute data over multiple locations
- Multiple administrative domains
- Use available resources

dCache.org 🔈

- Distribute data over multiple locations
- Multiple administrative domains
- Use available resources

dCache.org 🔝

- Works for all protocols
- Support HSM connectivity
 - Each site/pool may have it's own tape system
- Pools may run different major versions
 - Site has two years to upgrade pools

- Preferred write location depending on IP (location) or directory path (if requested)
- Preferred 'local' read access if data is available
- Replication
 - On Demand, when requested from remote site
 - Permanent, data protection, location adjustment
 - Manual, for data location optimization, maintenance

Multi-Site deployment

Pool selection internals

Protocol Path Client IP

Pool Groups

CAP

- Consistency
 - Every read receives the most recent write or an error.
- Availability
 - Every request receives a (non-error) response without guarantee that it contains the most recent write.
- Partition tolerance
 - The system continues to operate despite an arbitrary number of messages being dropped (or delayed) by the network between nodes.

The CAP Theorem:

You can have at most two of these properties for any shared-data system

A P

The CAP Theorem:

You can have at most two of these properties for any shared-data system

CAP theorem explained

- No distributed system is safe from network failures.
- In the absence of network failure both availability and consistency can be satisfied.
- The choice is between consistency and availability only when a network partition or failure happens.

dCache and CAP

- dCache provides consistency over availability.
- All client will see the same data at the same time.
- A timeout or error will be returned, if consistency can't be guaranteed.

Cloud deployment (scenario I)

hade by rreepik from www.flateoff.com

Cloud deployment (scenario II)

- Bust/High bandwidth write
- Short living data (one time action)
- Permanent resources not feasible

Requirements

- IP based separation of different Clouds or Zones required.
- Should be possible to start data server in desired zone.
 - API
- Data internal communication protection requires VPN or host certificates on demand.