Tracking efficiency study

Pisa, 12 October 2018

L.Zani

Istituto Nazionale di Fisica Nucleare

1

Outline

- Brief reminder about measurement strategy
- Selected Sample
- Preliminary Results
- Summary

Reminder: measurement overview

Strategy: exploit charge conservation and kinematic constrains on simple (= with a well recognizable topology) τ -pairs events to deduce the existence of a track.

Reference: "*Track finding efficiency in BaBar*" https://arxiv.org/abs/1207.2849

BaBar strategy was based on *Tau31 events selection*:

- Tracking efficiency, including the detector acceptance, is computed as:
 - $\epsilon xA = N4/(N3+N4)$
 - N4 = Tau31 events where the $4^{\mbox{\tiny th}}$ track has been found
 - N3 = Tau31 as reconstructed in the 1+2 selection (further details in the next slide) where the 4th is not found.
- MC-data difference in tracking efficiency is then given by:
 - $\Delta = 1$ $\epsilon_{_{MC}}/\epsilon_{_{data}}$
 - With ϵ the tracking efficiency evaluated respectively on MC/data, including the detector acceptance A.

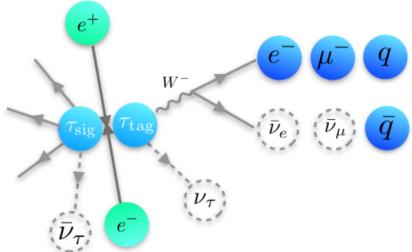
Tau31 events & BaBar strategy

ightarrow Tau decay length @10.58 GeV \sim 200 um (measurable but not impacting the tracking efficiency)

 \rightarrow One tau is required to decay leptonically (17.36%), the other semi-leptonically to a 3-prong final state (14.56%) \rightarrow **5% of total events** exploited for the study, so-called *Tau31 events*

- 2 charged hadronic tracks (2 categories: "same/opposite sign")
 - Track quality selection (max 5 charged tracks, of which at least 3 "good" tracks)
 - *pt* >100 *MeV*
 - K_s veto, PID, angular (θ,φ) isolation requirements are applied.

$$egin{array}{rll} au^{\pm} & \to & \mu^{\pm}
u_{\mu}
u_{ au}, \ au^{\pm} & \to & h^{\mp} h^{\mp} h^{\pm}
u_{ au} \end{array}$$


- Background rejection:
 - reject events with energy deposit from neutral particles
 > 0.5 GeV within 90° from muon track
 - 0.2*E^{CM}/2 < Muon pt <
 0.8*E^{CM}/2 : suppress di-muon,
 BhaBha radiative decays.

Charge conservation implies the fourth track.

L.Zani for Tracking Efficiency Study

The Sample: 2vs1

- DISCLAIMER: results presented here are studied on the sample 2vs1 + (at maximum) 1 ROETrack, where the *Thrust Axis* is built from all the tracks in the event → need to release this reconstruction by applying only angular isolation on the tag side track (mimic the BaBar measurement)
- e⁺e⁻ → ττ events in collision data (prod5): *Exp3, prod5, release-02-00-01/GT425* and in signal MC (1M tau pair events)+ pseudo BG included (real machine BG). Physics BG still to be included.
- RECONSTRUCTION ("good tracks"):
 - $\mathsf{Pt} > 0.1~\text{GeV}$
 - -0.8660 < cosTheta < 0.9535
 - $^-$ abs(dz) < 5.0 cm
 - abs(dr) < 1.0 cm
 - At maximum 1 ROETrack

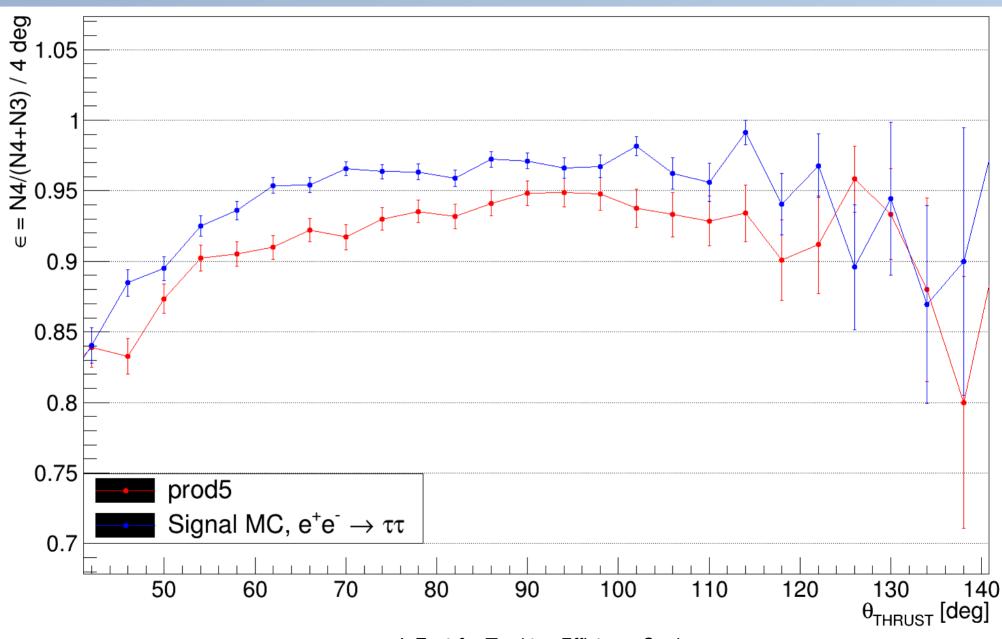
 \rightarrow reconstruct Thrust axis, which divides the event into two hemispheres (according to CosToEventThrust sign) : Signal side (total null charge, two opposite pions) and Tag side (one muon)

2018.10.12

L.Zani for Tracking Efficiency Study

The Sample: applied selection

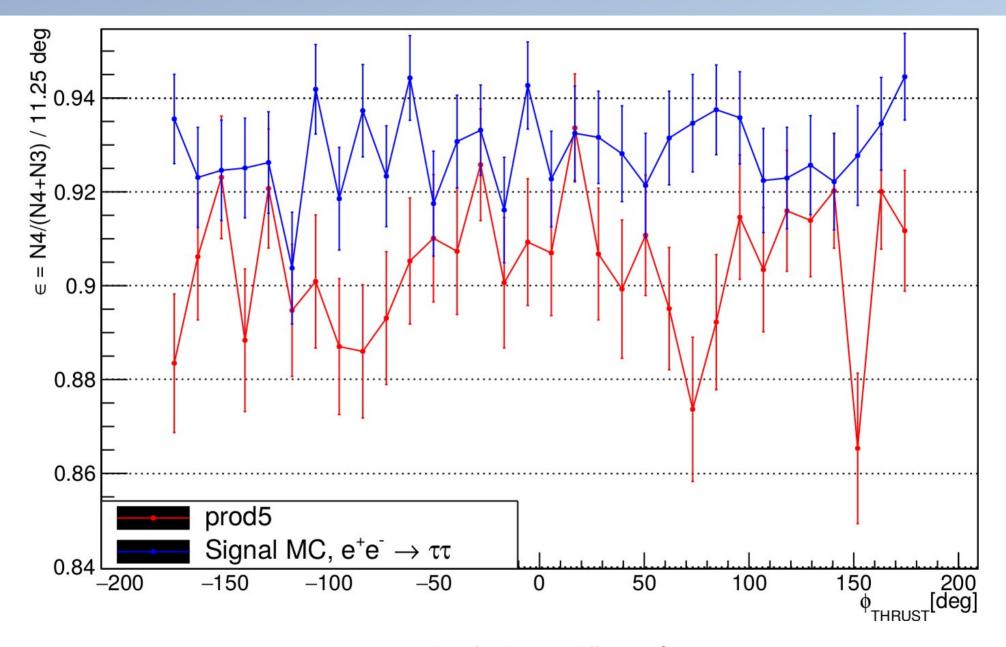
```
Further Selection requirements (taken from the Belle II note for the tau mass
     rediscovery, still to be optimized for this study):
     - ThrustValue > 0.87
     - VisibleEnergyCMS < 9.7 GeV
     - tau<sub>sig</sub> energy < 5.29 GeV
     - tau_{tag} energy < 5.22 GeV
    Muon selection (tag side):
     - vpho_tau_mu_clusterE >0. (matched cluster) && vpho_tau_mu_clusterE < 0.4</p>


    vpho_tau_mu_EoverP < 0.25 (mainly to reject electrons)</li>

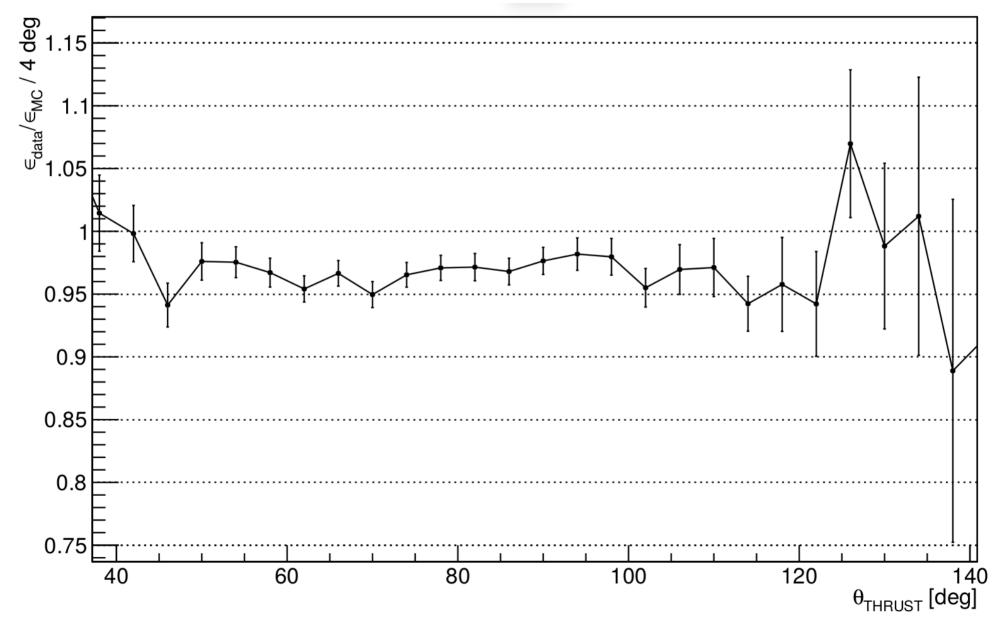
    Signal side prong selection:

      - vpho_tau_pi0_EoverP < 0.8 && vpho_tau_pi0_EoverP>0.2
      - vpho_tau_pi1_EoverP < 0.8 && vpho_tau_pi1_EoverP>0.2
                                     L.Zani for Tracking Efficiency Study
2018.10.12
```

6

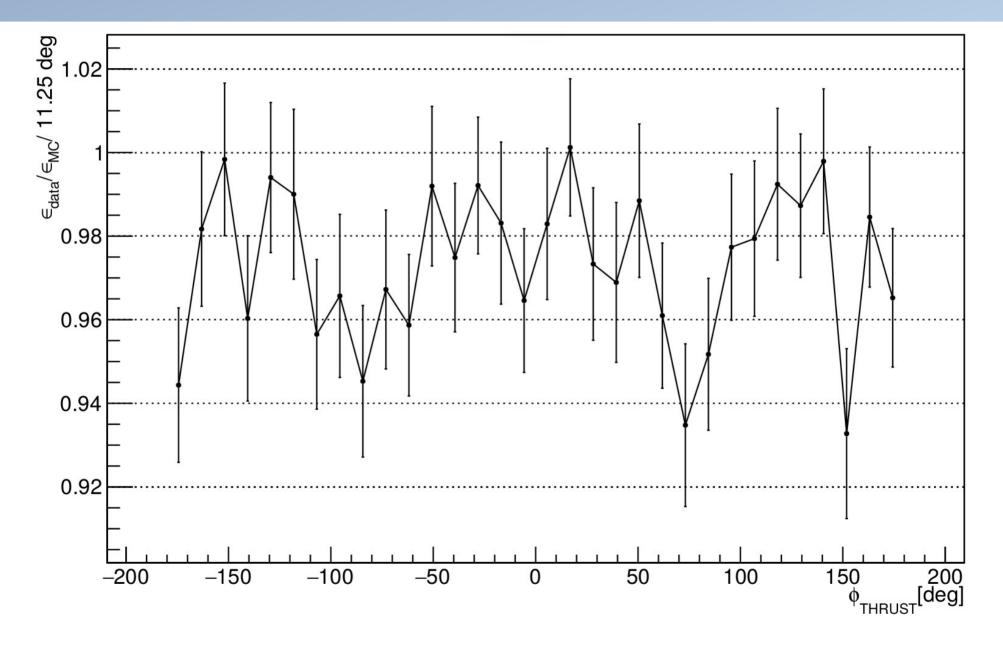


L.Zani for Tracking Efficiency Study


7

Efficiency Vs. Q_{THRUST}

L.Zani for Tracking Efficiency Study


Efficiency Ratio (Data/MC) Vs. θ_{THRUST}

2018.10.12

L.Zani for Tracking Efficiency Study

Efficiency Ratio (Data/MC) Vs. Q_{THRUST}

L.Zani for Tracking Efficiency Study

Summary

 \rightarrow A very preliminary estimate of the Data-MC tracking efficiency discrepancy integrated in phi is around 3%

To do:

 \rightarrow Run on background MC samples (add *continuum*)

 \rightarrow Mimic verbatim BaBar measurement: do not rely on Thrust Axis for event selection

Backup

Systematics uncertainties @BaBar

- Compute:
 - $\epsilon \times A = N4/(N3+N4)$
 - $\Delta=$ 1- $\epsilon_{_{MC}}/\epsilon_{_{data}}$
 - $a_{\pm} = (\epsilon_{+} \epsilon_{-})/(\epsilon_{+} + \epsilon_{-})$, charge asymmetry in tracking efficiency
- BIASING backgrounds:
 - 2 primary tracks events + photon conversion
 -
 - qq and tau pairs events with 6 tracks
 - $K_s \rightarrow \pi \pi$ events with displaced vertex (limited by the applied veto)

Systematics uncertainties @BaBar

- Compute:
 - $\epsilon xA = N4/(N3+N4)$
 - Δ = 1- $\epsilon_{_{MC}}/\epsilon_{_{data}}$
 - $a_{\pm} = (\epsilon_{+} \epsilon_{-})/(\epsilon_{+} + \epsilon_{-})$, charge asymmetry
- BIASING backgrounds:
 - 2 primary tracks events + photon conversion
 - qq and tau pairs events with 6 tracks
 - $K_s \rightarrow \pi \pi$ events with displaced vertex (limited by the applied veto)

Mis-modeling of background contamination (fake rate)+ unaccounted background sources in the simulation may systematically affect the calculated efficiency

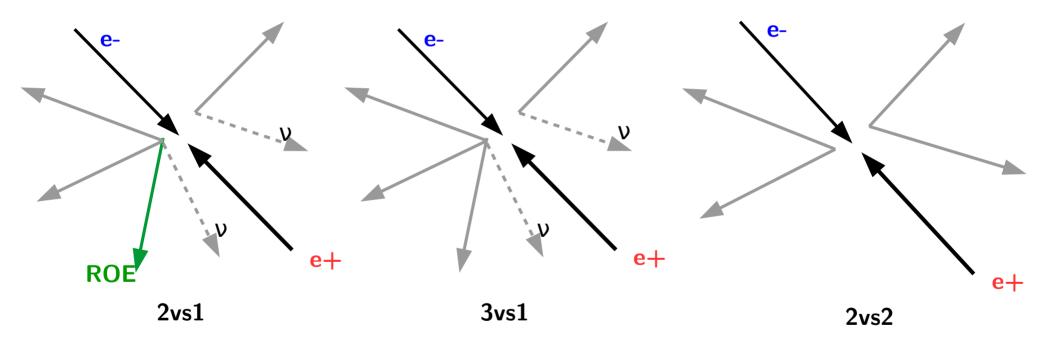
... ExA' evaluated on control samples enriched in photon conversion events

Systematics uncertainties @BaBar

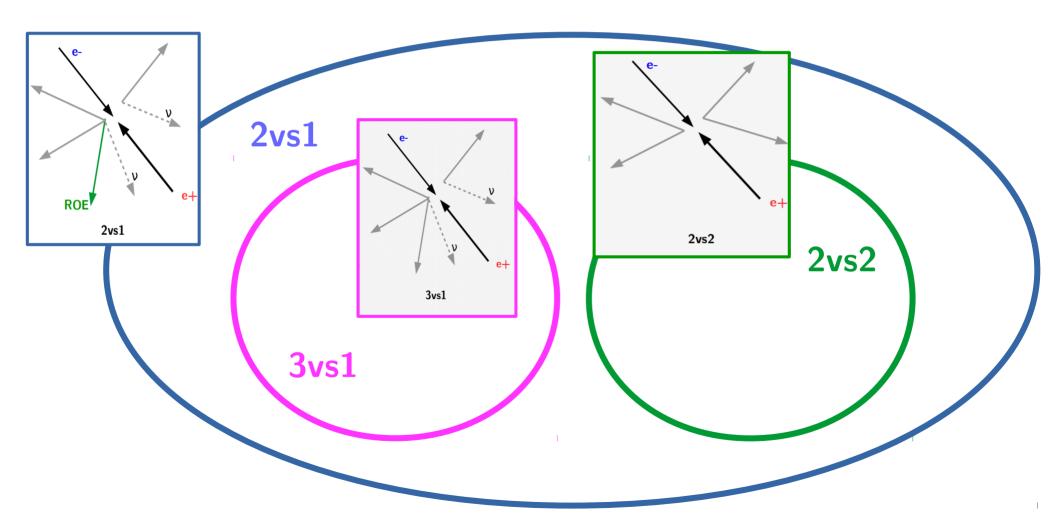
- Compute:
 - $\epsilon xA = N4/(N3+N4)$
 - $\Delta=$ 1- $\epsilon_{_{MC}}/\epsilon_{_{data}}$
 - $a_{\pm} = (\epsilon_{+} \epsilon_{-})/(\epsilon_{+} + \epsilon_{-})$, charge asymmetry
- BIASING backgrounds:
 - 2 primary tracks events + photon conversion
 - qq and tau pairs events with 6 tracks
 - $K_s \rightarrow \pi \pi$ events with c

The difference $\varepsilon \times A - \varepsilon \times A'$ is assumed as systematic uncertainty and propagated on Δ

Mis-modeling of background contamination (fake rate)+ unaccounted background sources in the simulation may systematically affect the calculated efficiency


... ExA' evaluated on control samples enriched in photon conversion events

Other sources of systematic uncertainties On A


Evaluate $\varepsilon A'$ without subtracting qq, K_s background Track multiplicity \rightarrow take the difference as uncertainty and displaced vertexes Compute $\epsilon XA' = N4/(N3+N4+N5)$, N5 = 4th and 5th track candidates found Fake rate \rightarrow take the difference as uncertainty Efficiency Measure Δ , a_{\pm} as a function of $\cos\theta$, pt of the 4th dependence on track \rightarrow not possibile to directly determined them due to neutrinos in the event \rightarrow use as estimators: the track $-\cos\theta^{\text{Miss}} = \cos(\theta_{\pi_1\pi_2})$ kinematics - $Pt^{Miss} = sqrt((E^{CM}/2 - E_{\pi 1} - E_{\pi 2})^2 - m_{\pi}^2) \times cos \theta^{Miss}$ L.Zani for Tracking Efficiency Study

2018.10.12

Reconstructed topologies

Sanity check: overlay check between different topology

