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• Belle II is a multipurpose detector operated at the SuperKEKB 
asymmetric collider 

• e+ and e- collide at √s = 10.58 GeV / c2, corresponding to mY(4S) 

• High spatial resolution required to resolve the two B mesons 
coming from the Y(4S)
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• Large fraction of π 
• Mostly particles with pt below 1 GeV

• On average 11 tracks in a Υ(4S) event

Fig: Average fraction of particles 
produced according to the type
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• SuperKEKB will deliver a peak luminosity of 8 × 1035 cm-2 s-1  

➡ High occupancy of the beam-induced background 
• 11 tracks → 102 signal hits 

                     104 background hits

• Touscheck effect 
• Beam-gas scattering 
• Synchrotron radiation 
• Radiative Bhabha process 
• Two photons process 
• Beam beam background
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Belle II Detector [735 collaborators, 101 institutes, 
23 nations]electrons  (7 GeV)

positrons (4 GeV)

Vertex Detector
2 layers Si Pixels (DEPFET) +  
4 layers Si double sided strip DSSD

Belle II TDR, arXiv:1011.0352

EM Calorimeter
CsI(Tl), waveform sampling electronics

Central Drift Chamber
Smaller cell size, long lever arm

Particle Identification 
Time-of-Propagation counter (barrel)
Prox. focusing Aerogel RICH (forward)

KL and muon detector
Resistive Plate Counter (barrel outer layers)
Scintillator + WLSF + MPPC  
(end-caps , inner 2 barrel layers)
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DAF  
Track fit
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• Background filter implemented with 
a MVA (FastBDT) 

• Based on variables from clustered 
hits 

•  Will be tuned with background only 
data

CDC Hits
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Axial 
Legendre

Stereo 
Legendre

Background 
rejection

Cellular 
Automaton

Merging

Quality control the equation of a tangent to a drift circle in the 
Legendre space 

CDC Hits • Hits in the CDC be can geometrically 
represented as circles 
• Center: fired sense wire 
• Radius: hit drift length
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Axial 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Quality control
Fig: Simulated BB event with 6 tracks in the Legendre 
plane

–

CDC Hits • 2-dimensional binary search 
toward the possible track candidate 



CDC Hits
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Quality control

Clusters

Triplets  

Segments  

• MVA filters or hand crafted features 
• Hit connection through bridging  

• Build segments from individual hits 
in each super layer 

• Build tracks from segments 
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SVD CKF

• SVD track finding with CFK from CDC 
• A Combinatorial Kalman Filter uses the principles of the Kalman Filter 

for track finding 
• Starting with a seed it adds hits with Monte Carlo Tree Search algorithm

CDC TrackCand SVD Hits

unused SVD Hits

CDC TrackCand2.0
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unused SVD Hits

• Cellular Automaton collects paths beginning with outermost 
SVD 3D-hits 

• Based on the concept of a sector on sensor (SectorMaps) 

• Neighboring 3D-hits are given by a set of filters 

• Reduction of combinatorics 
• Allows for multiple scattering  

• The final set of tracks is chosen from all  
paths such that no tracks share a SVD hit



SectorsMaps: virtual subdivisions of the sensors 

Segment: combination of two space points  

Friend sectors: sectors passed by the  
                               same MC particle during training  

Space points combinations are searched 
 only on friend sectors  

• Filtering of space points combinations based on simple geometric cuts 
• Cut values obtained using simulations 
• Cellular automaton → set of tracks potentially overlapping 
• Hopfield neural network → unique set of SVD track candidates

20
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TrackCand 
merging with CKF

• CDC and SVD track candidates merging with CKF 
• Adding PXD hits with CFK from track candidates

CDC TrackCand2.0 SVD TrackCand

TrackCand

PXD CKF
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• Tracks are fitted with the track fitting package GENFIT2  
• Rewrite of GENFIT incorporating what we learned in Belle II, 

PANDA, COMPASS  

• Experiment-independent track fitting software 

• Several algorithms implemented inside 
• Determinist Annealing Filter (DAF) used 

• Hits from different detectors 
• Not uniform magnetic field 
• Energy loss dependent on particle type 

• DAF removes outliers and  
downweighs distant hits
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• Deterministic Annealing Filter with 3 different mass hypotheses in 
parallel (π, K, p)

• At high momentum → similar results 
• At low momentum → large bias in momentum when using the wrong                

mass hypotheses

MC particle gun 
fixed momentum 
Kaons at θ=60º
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• KFit 
• Belle implementation 
• Based on a least square minimization approach 

• Can fit neutrals assuming the vertex is {0,0,0} 

• RAVE 
• standalone implementation of CMS libraries 
• Kalman filter approach 

• Weights tracks when using it to fit multiple tracks 
• Can only fit charged particles and single vertices 

• TreeFitter 
• Belle II implementation
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• Kalman filter approach 
• Global vertex fitter 
→ fit an entire decay chain simultaneously  

• Features / Constraints implemented: 
• Kinematic constrain 
• Geometric constrain 
• Mass constrain 
• IP constrain 
• Custom origin constrain 

• PRO: 
• Fast 
• High background rejection 
• Can fit neutrals 
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Fig. 3: Resolution of the transverse d0 (left) and longitudinal z0 (right) impact parameters.

The results for MC events with a single muon track using the Belle II tracking algorithm

are compared with the results for Belle cosmic events [? ]. The resolution in each bin is

estimated using the � value of a single Gaussian function fitted in a region containing 90%

of the data around the mean value of the distributions.
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Fig. 4: (left) SVD-only pattern recognition e�ciency versus the transverse momentum, for

generic ⌥ (4S) events with and without machine background; (right)

the left plot of Fig. ?? the track finding e�ciency using only SVD hits. The overall e�ciency 152

is higher, and, most important, the degradation of the performance with background is much 153

limited with respect to what shown earlier. 154

1.3.2. V 0-like particle reconstruction. Long-lived neutral particles that decay into two 155

charged particles at some distance away from the interaction point are reconstructed using a 156

dedicated algorithm. This V 0 reconstruction takes place after the reconstruction of charged 157

particles and is intended to avoid extrapolation through material on the analysis level, where 158

the actual V 0 selection takes place. This is in accordance with the design goal of removing 159

dependence of analysis level information on knowledge of the detector material. 160

The goal of V 0 reconstruction is to keep all reasonably accurate V 0 vertices outside the 161

beam pipe as well as those inside the beam pipe whose reconstructed mass is reasonably 162

6/??

012345678
m

]
µ [

σ
-R

es
ol

ut
io

n 
0d

0

20

40

60

80

100

120

140
 

3/2)θsin(βp

2b + 2a =  σFit function:    

cm GeV/µ 0.7 ± =  34.3 b
mµ 0.3 ± =  17.4 a

Belle SVD2 cosmic (Data) BN715

cm GeV/µ 0.2 ± =  17.5 b
mµ 0.1 ± =   9.0 a

Belle II single track events (MC)

 0.02±  =  1.91 Belle IIσ

BelleσFitted ratio  

 

]c [GeV/3/2)θsin(βp
0 1 2 3 4 5 6 7 8

Be
lle

 II
σ/

Be
lle

σ

1.6
1.8

2
2.2
2.4

012345678
m

]
µ [

σ
-R

es
ol

ut
io

n 
0z

0

20

40

60

80

100

120

140
 

5/2)θsin(βp

2b + 2a =  σFit function:    

cm GeV/µ 0.8 ± =  32.9 b
mµ 0.4 ± =  26.3 a

Belle SVD2 cosmic (Data) BN715

cm GeV/µ 0.2 ± =  17.9 b
mµ 0.1 ± =  11.5 a

Belle II single track events (MC)

 

]c [GeV/5/2)θsin(βp
0 1 2 3 4 5 6 7 8

Be
lle

 II
σ/

Be
lle

σ

1.6
1.8

2
2.2
2.4

Fig. 3: Resolution of the transverse d0 (left) and longitudinal z0 (right) impact parameters.

The results for MC events with a single muon track using the Belle II tracking algorithm

are compared with the results for Belle cosmic events [? ]. The resolution in each bin is

estimated using the � value of a single Gaussian function fitted in a region containing 90%

of the data around the mean value of the distributions.

0.0 0.5 1.0 1.5 2.0 2.5

Transverse momentum / GeV

0.825

0.850

0.875

0.900

0.925

0.950

0.975

Fi
nd

in
g

e�
ci

en
cy

93.92 - Y4S

93.39 - Y4S+BKG

Fig. 4: (left) SVD-only pattern recognition e�ciency versus the transverse momentum, for

generic ⌥ (4S) events with and without machine background; (right)

the left plot of Fig. ?? the track finding e�ciency using only SVD hits. The overall e�ciency 152

is higher, and, most important, the degradation of the performance with background is much 153

limited with respect to what shown earlier. 154

1.3.2. V 0-like particle reconstruction. Long-lived neutral particles that decay into two 155

charged particles at some distance away from the interaction point are reconstructed using a 156

dedicated algorithm. This V 0 reconstruction takes place after the reconstruction of charged 157

particles and is intended to avoid extrapolation through material on the analysis level, where 158

the actual V 0 selection takes place. This is in accordance with the design goal of removing 159

dependence of analysis level information on knowledge of the detector material. 160

The goal of V 0 reconstruction is to keep all reasonably accurate V 0 vertices outside the 161

beam pipe as well as those inside the beam pipe whose reconstructed mass is reasonably 162

6/??

• Resolution of the transverse (d0) and longitudinal (z0) impact parameters 
• Belle II MC events with a single muon tracks are compared with results of 

Belle cosmic events
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• Track finding efficiency as a function of pt and θ 
• Integrated efficiency w/o background is ~96.5%, w/ is ~95.8%
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 We measured the effective bunch length it in two track events 
with early Belle II data

SuperKEKB

= 0.049 cm 
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•  Evidence of Ks (~5 pb-1) and Λ0 (~250 pb-1) 
•  Very early stage of data taking during detector commissioning
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• Separate approaches employed for track finding in the CDC and SVD  
• CDC track finding is based on a global Legendre and a local cellular 

automaton 
• SVD track finding uses a sector on sensor concept 
• CKF-based methods are used to merge tracks and pick up pixel hits  

• Track fitting takes into account realistic magnetic field, energy loss for 
different particles and different kind of detector hits 

• Tracks are fitted with three mass hypotheses (𝜋, K, p) 

• Global vertex fitter recently implemented  

• Tracking and vertexing successfully tested on simulation 
and on first data collected during detector commissioning 
phase
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SVD 4 layers (DSSD) → 2 DEPFET + 4 
DSS
CDC: small cell, long lever arm
ACC+TOF → TOP + ARICH
ECL: waveform sampling
KLM: RPC → Scintillator+SiPM

Belle II  

Belle
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➡ x40 luminosity: 

• x40 produced signal events  

• Higher background  
(detector occupancy, fake hits, 
radiation damage) 

• Higher event rate  
(trigger rate,DAQ, computing) 

 

➡ Important to have a dedicated phase 
for background studies, detector 
response and alignment 
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