Supersymmetry Enhancement

Federico Carta

DESY, Hamburg

20th of November 2018

Federico Carta (DESY, Hamburg)

Supersymmetry Enhancement

20th of November 2018 1 / 24

a

General Things

- Name: Federico Carta
- Age: 27
- Position: Postdoc
- Office: 305, 2a
- Email: federico.carta@desy.de
- From: Italy

Where I come from

Federico Carta (DESY, Hamburg)

Where I come from

イロト イヨト イヨト イヨト

Federico Carta (DESY, Hamburg)

Supersymmetry Enhancement

20th of November 2018 4 / 24

Federico Carta (DESY, Hamburg)

Federico Carta (DESY, Hamburg)

Federico Carta (DESY, Hamburg)

Federico Carta (DESY, Hamburg)

Federico Carta (DESY, Hamburg)

Research Interests.

- Swampland constraints from Quantum Gravity
- F-Theory
- Exact results in rigid supersymmetric QFTs

< 回 > < 三 > < 三 >

Research Interests.

 Swampland constraints from Quantum Gravity (T.D. Brennan, F.C., C. Vafa) (F.C, M. Montero, work in progress)

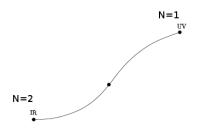
- F-Theory (F.C, F. Marchesano, G. Zoccarato) (F.C, A.Collinucci, S. Giacomelli, H. Hayashi, R. Savelli, work in progress)
- Exact results in rigid supersymmetric QFTs (F.C, H. Hayashi) (F.C, S. Giacomelli, R. Savelli)

A B F A B F

< 6 b

Research Interests.

 Swampland constraints from Quantum Gravity (T.D. Brennan, F.C., C. Vafa) (F.C, M. Montero, work in progress)


- F-Theory (F.C, F. Marchesano, G. Zoccarato) (F.C, A.Collinucci, S. Giacomelli, H. Hayashi, R. Savelli, work in progress)
- Exact results in rigid supersymmetric QFTs (F.C, H. Hayashi) (F.C, S. Giacomelli, R. Savelli)

A (10) A (10)

Supersymmetry enhancement.

 A UV QFT follows an RG flow to a IR QFT with more explicit supersymmetry.

A schematic picture.

Different approaches.

1 MS flows. $4d \mathcal{N} = 1 \rightarrow \mathcal{N} = 2$

2 BG flows. $3d \mathcal{N} = 2 \rightarrow \mathcal{N} = 4$

- Ungauging quiver tails. (Gadde-Rastelli-Razamat).
- 3 $d \mathcal{N} = 1 \rightarrow \mathcal{N} = 2.$ (Komargodski).
- 3d CS-Maxwell. (Yamazaki et al.)

Why do we care?

- Interesting phenomenon in QFT, a priori.
- Find new and unexpected RG flows.
- If the UV $\mathcal{N} = 1$ is lagrangian and the IR $\mathcal{N} = 2$ is not, you really have lagrangianized a non-lagrangian theory.
- Many studied 4d $\mathcal{N} = 2$ (like class-S) are believed to *never* admit a lagrangian. Is it true? Or people look under the lamppost of flows preserving the amount of SUSY?
- Use the UV description to compute quantities conserved along the RG flow, like the superconformal index.
- SUSY Enhancement \iff T-branes and geometry.

Maruyoshi-Song flows.

- Start in UV with a $4d \mathcal{N} = 2$ SCFT \mathcal{T} with flavor symmetry F.
- Add by hand a $\mathcal{N} = 1$ chiral M.
- *M* is gauge singlet and in the adjoint of the *F*.
- Turn on a superpotential term $W_{def} = TrM\mu$ where μ is the moment map operator. ($\mu \simeq q\tilde{q}$ if \mathcal{T} is lagrangian).
- Give a special kind of vev to M. This triggers a RG flow.
- Depending on the choice of \mathcal{T} and $\langle M \rangle$ sometimes we find that $\mathcal{T}[\langle M \rangle]$ flows in the IR a *new* $\mathcal{N} = 2$ SCFT: call it $\mathcal{T}[\langle M \rangle]_{IR}$.
- "New" means $\mathcal{T}[\langle M \rangle]_{IR} \neq \mathcal{T}$

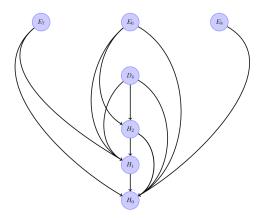
- *M* is a matrix in the adjoint of *F*.
- We choose $\langle M \rangle$ to be along a nilpotent orbit of $\mathfrak{f}_{\mathbb{C}}$
- Nilpotent orbit is defined as ghg^{-1} for $g \in F$ and $h \in \mathfrak{f}_{\mathcal{C}}$ nilpotent.
- Nilpotent orbits are *completely classified* by mathematicians.
- For a fixed \mathcal{T} , finite number of possible MS deformations.

Example:

$$\langle M \rangle = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \tag{1}$$

is nilpotent vev in the maximal nilpotent orbit of \mathfrak{sl}_2 .

Evidence for the enhancement.


a-maximization.

- $\mathcal{N} = 2 U(1)_r \times SU(2)_R$ R-symmetry is broken to $U(1)_{\mathcal{N}=1}^{UV} \times U(1)_{\mathcal{F}}$ • $U(1)_{\mathcal{N}=1} = U(1)_{\mathcal{N}=1}^{UV} + \epsilon U(1)_{\mathcal{F}}$ mixing of R-symmetry and flavor.
- 3 $a(\epsilon)$ and $c(\epsilon)$ central charges depend on ϵ .
- $a(\epsilon)$ is extremal at the IR fixed point. \implies find ϵ^*
- \bigcirc If a and c are rational, good evidence for enhancement.
- Often find a and c of previously known AD theories.

• The full Superconformal Index.

- **(**) Compute the UV $\mathcal{N} = 1$ Index by SUSY localization.
- 2 Upon finding the extremizing ϵ^* , shift the index fugacities
- 3 Find the $\mathcal{N} = 2$ index
- Check limits of the index against previously computed cases. (Shur, McDonald, Coulomb, HL, HS of 3d mirror CB)
- Huge evidence for enhancement.

Enhancing flows connecting rank 1 theories

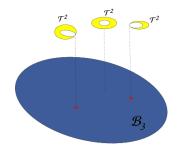
A figure summarizing all the existent MS connecting rank one theories. Multiple flows happen for different nilpotent orbit deformations.

Federico Carta (DESY, Hamburg)

Supersymmetry Enhancement

20th of November 2018 18 / 24

< 6 b


Open questions.

- Why only some specific nilpotent vevs for M give Susy enhancement?
- ② Can one find more examples of SCTs showing these features?
- Can one understand in a more direct way why the enhancement happens, from a physical point of view?
- Is there a way to see this phenomenon from a String Theory engineering of the QFT?

F-Theory introduction.

Vafa '96

- IIB Axiodilaton $\tau = C_0 + ie^{-\phi}$ as the complex structure of an elliptic curve, fibered over a 3-fold kahler base.
- Fibration is singular at the location of 7-branes.
- Codim $1 \implies$ gauge group.
- Codim 2 ⇒ matter curves. Where two 7-branes intersect.

We can put a D3 brane to probe the 7-brane.

In F-Theory this means the D3 brane probes the singularity of the fibration.

20th of November 2018 20 / 24

The geometrical picture. Part 1

- Consider a F-theory setup, with a D3 probing the elliptic fibration.
- Write the Weierstrass model for the elliptic fibration. The theory on the D3 will be the theory T in the UV. In particular the Weiestrass model fixes the flavor group F.
- Elliptic fiber \simeq Seiberg-Witten curve of the QFT.
- The chiral *M* is geometrized by a T-brane deformation of the 7-brane stack. ⇒ Nilpotent orbit + fluctuation.
- Ex. For the case in which (M) is in the maximal orbit of sl₂, we take a T-brane profile given by:

$$\left\langle \varphi \right\rangle = \left(\begin{array}{cc} 0 & 1 \\ x & 0 \end{array} \right)$$

Federico Carta (DESY, Hamburg)

(2)

The geometrical picture. Part 2

Singularity	Curve	Flavor group
II^*	$u^{2} = v^{3} + v(M_{2}z^{3} + M_{8}z^{2} + M_{14}z + M_{20}) + (z^{5} + M_{12}z^{3} + M_{18}z^{2} + M_{24}z + M_{30})$	E_8
III^*	$u^{2} = v^{3} + v(z^{3} + M_{8}z + M_{12}) + (M_{2}z^{4} + M_{6}z^{3} + M_{10}z^{2} + M_{14}z + M_{18})$	E_7
IV^*	$u^{2} = v^{3} + v(M_{2}z^{2} + M_{5}z + M_{8}) + (z^{4} + M_{6}z^{2} + M_{9}z + M_{12})$	E_6
I_0^*	$u^{2} = v^{3} + v(\tau z^{2} + M_{2}z + M_{4}) + (z^{3} + \tilde{M}_{4}z + M_{6})$	SO(8)
IŇ	$u^2 = v^3 + v(M_{1/2}z + M_2) + (z^2 + M_3)$	SU(3)
III	$u^2 = v^3 + vz + (M_{2/3}v + M_2)$	SU(2)
II	$u^2 = v^3 + vM_{4/5} + z$	no

Table: Maximally deformed Weierstrass models

- The parameters M_i are the versal deformations of the model
- They correspond to casimir operators of the Higgs field in the F-theory picture, which we take to be $\langle \varphi \rangle = \langle M \rangle + \delta M$
- (M) is fixed by the chosen nilpotent orbit. δM will be the highest-spin singlet appearing in the decomposition of Adj.

The geometrical picture. Part 3

- When the D3 probes the deformed Weiestrass model, the theory is $\mathcal{N} = 1$, due to the T-brane presence. Original K3 \rightarrow CY3.
- RG flow is a local zoom at the singularity. In the IR the probe does not have enough energy to resolve global aspects of the singularity.
- In the IR, some terms in the Weiestrass become subleading. We throw them away and recover the Weierstrass for \mathcal{T}^{IR}
- Assume there is enhancement. Then CY3 ~ K3 ×C. Make an ansatz for which operator decouple, drop it from the Weierstrass. Check the ansatz. When consistent, gives the Weierstrass of N = 2 IR theory. Always.

Thank you for your attention.

æ