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Agenda

• Recap from the previous seminar

• Parallelization of a computational problem

• Parallelization with Python using Message Passing Interface (MPI)

• Summary

| HPC Seminar | DESY IT, 19.11.2018



Page 3

Recap from the previous seminar

• Quite often scientific Python code can be made fast
• use specific libraries (NumPy, SciPy)
• detect, isolate and compile pieces of the code that do lot of work

• numba, ...
• Python code can make use of multicore architecture

• specific libraries
• threading package for I/O bound problems
• multiprocessing package 
• automatic parallelization with numba for NumPy arrays
• explicit parallelization with numba for loops

• threading module and numba

| HPC Seminar | DESY IT, 19.11.2018
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Parallelization of a computational problem

• Two ways to partition a problem

• Domain decomposition - focus on data

• Functional decomposition - focus on tasks

| HPC Seminar | DESY IT, 19.11.2018

How to partition computations to compute in parallel

CPU CPU CPU
A problem to solve
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Parallelization of a computational problem

• Domain decomposition methods 
• split your geometrical/mathematical domain on multiple subdomains, each CPU take 

care of a single one
• Challenges

• partition your domain most efficiently

• subdomain sizes are equal
• single process allocates memory only for its

own subdomain
• minimize boundaries
• keyword – ParMETIS

• exchange information between subdomains
• may become a bottleneck

• I/O should be parallelized as well
• Result post-processing

• Paraview, Visit, Tecplot, ...

| HPC Seminar | DESY IT, 19.11.2018

Domain Decomposition
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Parallelization of a computational problem

• Computational Fluid Dynamics

• heat transfer, mass transfer, phase change, chemical reactions

• Structural mechanics

• deformations, deflections, forces/stresses

• Climate studies

• Everything where computations with matrices
are needed

| HPC Seminar | DESY IT, 19.11.2018

Examples – Domain Decomposition
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Parallelization of a computational problem

• Function decomposition methods 

• split your computational task on multiple sub-tasks, each CPU take care of a single 
one

• Challenges – similar to domain decomposition

• partition your tasks most efficiently

• efforts to compute a sub-task are equal

• exchange information between sub-tasks if necessary

| HPC Seminar | DESY IT, 19.11.2018

Functional Decomposition

computing.llnl.gov
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Parallelization of a computational problem

• Signal processing

• Climate modelling

• ...

| HPC Seminar | DESY IT, 19.11.2018

Examples  - Functional Decomposition

computing.llnl.gov
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Parallelization of a computational problem

• Simple (if you are lucky)

• Embarrassingly parallel

• Nearly embarrassingly parallel ( e.g. master-worker)

• Complex communications between parallel processes

| HPC Seminar | DESY IT, 19.11.2018

How to exchange information between parts of a parallel problem 

CPU CPU CPU
A problem to solve
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Parallelization of a computational problem

• “Embarrassingly parallel”

• no communications are needed between parallel tasks

| HPC Seminar | DESY IT, 19.11.2018

Embarrassingly Parallel

...Worker Worker Worker
A problem to solve
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Parallelization of a computational problem

• “Nearly embarrassingly parallel”

• few trivial data exchange are needed between parallel tasks

| HPC Seminar | DESY IT, 19.11.2018

Embarrassingly Parallel

Worker
A problem to solve

...Master Worker

send work to do

send results back
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Parallelization of a computational problem

• HEP – event simulation and reconstruction

• Photon science – image processing (independent)

• Rendering in computer graphics (pixels are independent)

• Face recognition system

• Simulations comparing independent scenarios

• e.g. climate models

• Discrete Fourier transform

• .....

| HPC Seminar | DESY IT, 19.11.2018

Embarrassingly Parallel - Examples
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Parallelization of a computational problem

| HPC Seminar | DESY IT, 19.11.2018

Complex Communications Example – Laplace equation (from introduction seminar)

Data values in neighbour points are needed to compute local value 
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Parallelization of a computational problem

| HPC Seminar | DESY IT, 19.11.2018

Complex Communications Example – Laplace equation

Communications needed when points are distributed over processes

P1 P2 P3 P4

P5 P6 P7 P8

P9 P10 P11 P12

P13 P14 P15 P16
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Parallelization with Python

• There are (as often with Python) several options
• using specific frameworks for parallel data processing

• Dask, Parsl, Apache Spark, ...
• using Jupyter/IPython clusters for parallel computing
• whatever else

• ParallelPython, dispy, ray, ...
• going low(er)-level and use MPI

| HPC Seminar | DESY IT, 19.11.2018

Ways to implement parallelization
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Parallelization with Python

• There are (as often with Python) several options
• using specific frameworks for parallel data processing

• Dask, Parsl, Apache Spark, ...
• using Jupyter/IPython clusters for parallel computing
• whatever else

• ParallelPython, dispy, ray, ...
• going low(er)-level and use MPI
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Ways to implement parallelization

we chose this way (for today)



Page 17

MPI

• We have a program calc.py

• want to complete our simulations faster

| HPC Seminar | DESY IT, 19.11.2018

Parallelization approach

CPU
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MPI

• we have to somehow split the job

• each nodes starts its own instance of the program

• instances exchange data

| HPC Seminar | DESY IT, 19.11.2018

Parallelization approach

MPI
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MPI

• Standardized interface to a communication library

• Hides hardware/software communication mechanisms from a user

• Implements internode communications via messages

• SPMD – each process starts same program. All variables are local for each process.

| HPC Seminar | DESY IT, 19.11.2018

Overview
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MPI

| HPC Seminar | DESY IT, 19.11.2018

Example

from mpi4py import MPI

comm = MPI.COMM_WORLD

size = comm.Get_size()
rank = comm.Get_rank()

print('Hello, World! I\'m process #%d of %d' % (rank, size))
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MPI

• You don‘t have to compile with Python, but you need to use same MPI version which was 
used for mpi4py - module load python3.4/openmpi will do it on Maxwell.

• Execute python script via mpirun/mpiexec

• mpirun –np 4 python3 script.py
• see docs for more info

• On Maxwell we use SLURM

• one can omit number of processes and configure required resources via SLURM 
parameters

• Btw, numba will not compile in @njit mode for functions using mpi4py calls.

| HPC Seminar | DESY IT, 19.11.2018

Configuring and execution
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MPI

• Let’s have a look at the first example:

/data/netapp/hpc-seminars/PythonMultiNodeParallelization/1_hello_world

• copy to your folder

• run it via SLURM – sbatch run.sh
• check output

• play with SLURM parameters and see what changes

• --nodes, --tasks, --cpus-per-task, --ntasks-per-node

• set parameters so that one instance of the program was run on two nodes

• add measuring time and print it at the end (after comm.Barrier())

• should be printed only once

| HPC Seminar | DESY IT, 19.11.2018

First Program

Finished? https://goo.gl/forms/79AlFWZXwCSqtT962
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MPI

| HPC Seminar | DESY IT, 19.11.2018

First Program - Solution

from mpi4py import MPI
import socket
import time
start = time.time()

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
node = socket.gethostname()

print('Hello, World! I\'m process #%d of %d, running on node %s' % 
(rank, size,node))

comm.Barrier()

end = time.time()
if rank == 0:

print("Elapsed %.6f sec" % (end - start))
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MPI

| HPC Seminar | DESY IT, 19.11.2018

First Program - Solution

#!/bin/bash

#SBATCH --ntasks=2

#SBATCH --nodes=2

#SBATCH --partition=all

#SBATCH -t 00:01:00

module load python3.4/openmpi

#python->python3

mpirun python ./hello_world.py
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MPI

• mpi4py makes communications between processes easy
• can communicate generic Python objects (using pickle)
• can communicate buffer-like objects (NumPy arrays)

• MPI (mpi4py) supports different kinds of communications

• communication categorized by locality
• local (point-to-point)
• global (collective, all-to-all)

• communication categorized by operating mode
• blocking

• non-blocking

| HPC Seminar | DESY IT, 19.11.2018

Communications
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MPI

• MPI implements interprocess communications via messages
• Object/data to send
• Who recieves the message
• (Data type of the message)
• (Message size)

• Message Tag

• Who sent the message
• Where to store the received message

| HPC Seminar | DESY IT, 19.11.2018

Point-to-point communications

P0 P1

Network
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MPI

comm.send( obj, \ # Python object (number, dictionary, etc.)
int_dest, \ # rank of destination process
int_tag = 0) # message tag

result = comm.recv( int_source = none, \ # rank of source process

int_tag = None, # message tag
Status_status=None) # request status

• these are blocking calls – execution will stop until communication is finished

| HPC Seminar | DESY IT, 19.11.2018

Point-to-point communications – Python Object
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MPI

comm.Send( buf, \ # buffer

int_dest, \ # rank of destination process

int_tag = 0) # message tag

comm.Recv( buf, \ # buffer

int_source = none, \ # rank of source process

int_tag = None, # message tag

Status_status=None) # request status

• buf - tuple like [data, MPI.DOUBLE], or [data, count, MPI.DOUBLE] or just 
data for basic C types

• buf must be preallocated with enough space

• these are blocking calls – execution will stop until communication is finished

| HPC Seminar | DESY IT, 19.11.2018

Point-to-point communications – NumPy arrays
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MPI

• Classical approach to parallel programming

• One process is a master

• The other processes are workers

• Master collects results from workers

• Uses only Send and Recv

• Point-to-point communication pattern

| HPC Seminar | DESY IT, 19.11.2018

Master-Worker Approach

MW

W

W

W
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...

start_x = a + rank * (b - a) / size
int_local = trap(start_x, h, npoints_local)

if rank == 0:
res = int_local
for i in range(1, size):

tmp = comm.recv(source = i)
res = res + tmp

print("Result: %.5f "%res)
else:

comm.send(int_local, 0)

MPI

| HPC Seminar | DESY IT, 19.11.2018

Integration in parallel

Finished? https://goo.gl/forms/79AlFWZXwCSqtT962

f (x)dx
a

b

∫
/data/netapp/hpc-seminars/PythonMultiNodeParallelization/2_integration
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MPI

• communication between processes can result in deadlock

| HPC Seminar | DESY IT, 19.11.2018

Deadlocks

other = 1 if rank == 0 else 0; 
comm.Send(data_send,other);
comm.Recv(data_recv,other);        
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MPI

• /data/netapp/hpc-seminars/PythonMultiNodeParallelization/3_deadlock
• copy to your folder, compile, run with two MPI processes (without SLURM or via an 

interactive job)
• do you get deadlock?
• correct the program

| HPC Seminar | DESY IT, 19.11.2018

Deadlock

Finished? https://goo.gl/forms/79AlFWZXwCSqtT962
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MPI

| HPC Seminar | DESY IT, 19.11.2018

Deadlock - Solution

from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

neighbour = 1 if rank == 0 else 0

if rank == 0:
res = comm.recv(source = neighbour)
comm.send(1-rank,neighbour)

else:
comm.send(1-rank,neighbour)
res = comm.recv(source = neighbour)

print("received %d from %d"%(res,neighbour))
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MPI

• Motivation

• Avoids deadlocks

• Simplifies programming

• Reduces syncronization

• May allow to overlap communication and computation

• Requires additional request handle

• Created for each nonblocking communication call

• Used to check the communication state (wait/test operation)

| HPC Seminar | DESY IT, 19.11.2018

Non-blocking communications
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MPI

• Non-blocking send

• r1 = comm.isend(obj, int_dest, int_tag = 0)

• r1 = comm.Isend(buf, int_dest, int_tag = 0)

• Non-blocking receive

• r2 = comm.irecv(int_source = none, int_tag = None)

• r2 = comm.Irecv(buf, int_source = none, int_tag = None)

• Wait operations to finish

• r1.wait()
• r1.Wait()
• r2.Wait()
• result = r2.wait()
or

• MPI.Request.Waitall([r1, r2])

| HPC Seminar | DESY IT, 19.11.2018

Non-blocking communications
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MPI – Non-blocking Communications 

• /data/netapp/hpc-seminars/PythonMultiNodeParallelization/4_nonblocking

• rewrite the program using non-blocking calls

| HPC Seminar | DESY IT, 19.11.2018

Deadlock

Finished? https://goo.gl/forms/79AlFWZXwCSqtT962
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MPI – Non-blocking Communications 

| HPC Seminar | DESY IT, 19.11.2018

Deadlock - solution

from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

neighbour = 1 if rank == 0 else 0

req_wait = comm.irecv(source = neighbour)
req_send = comm.isend(1-rank,neighbour)

res = req_wait.wait()
req_send.wait()

print("received %d from %d"%(res,neighbour))
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MPI - Collective Communications

• Three types: 

• Synchronization (Barrier)

• Data exchange (Scatter, Gather, Alltoall, Allgather)

• Reductions (Reduce, Allreduce, Reduce_scatter)

• Usually blocking (non-blocking also possible)

• Can be implemented with point-to-point calls

• Collective implementation is usually better optimized (tree-based algorithms, etc.)

| HPC Seminar | DESY IT, 19.11.2018



Page 39

Barrier

• Explicit syncronization

• Block the process until all processes in the communicator called it

• Usually not needed

• Syncronization is done implicitly by other communication calls

• Can be used for debugging, profiling, etc.

comm.Barrier()

| HPC Seminar | DESY IT, 19.11.2018
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Broadcast

• One process (root) sends data to all others

result = comm.bcast(obj, int_root = 0)
comm.Bcast(buf, int_root = 0)
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Reduce

• Op_Op (MPI.SUM (default) , MPI.MAX, MPI.MIN, MPI.PROD, or user
defined)

result  = comm.reduce(sendObj,Op_op = None, int_root = 0)
comm.Reduce(sendbuf, recvbuf,Op_op = None, int_root = 0)
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MPI

| HPC Seminar | DESY IT, 19.11.2018

Integration in parallel

Finished? https://goo.gl/forms/79AlFWZXwCSqtT962

• /data/netapp/hpc-seminars/PythonMultiNodeParallelization/5_integration_collective

• rewrite the program using comm.reduce
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...
int_local = trap(start_x, h, npoints_local)
res = comm.reduce(int_local, root=0)

if rank == 0:
print("Result: %.5f "%res)

MPI

| HPC Seminar | DESY IT, 19.11.2018

Integration in parallel - solution
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Scatter

• One process scatters data to all others (including itself)
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result = comm.scatter(sendObj, int_root = 0)
comm.Scatter(sendbuf, recvbuf, int_root = 0)

| HPC Seminar | DESY IT, 19.11.2018
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Gather

• One process gathers data from all others (including itself)
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result = comm.gather(sendObj, int_root = 0) 
comm.Gather(sendbuf, recvbuf, int_root = 0) 

| HPC Seminar | DESY IT, 19.11.2018
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MPI – Collective Communications 

• /data/netapp/hpc-seminars/PythonMultiNodeParallelization/6_pi
• Create random points in process 0
• send them to other processes (use comm.Scatter)
• compute part of Pi on every process, use comm.reduce to get Pi.

| HPC Seminar | DESY IT, 19.11.2018

Computation of Pi

Finished? https://goo.gl/forms/79AlFWZXwCSqtT962
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MPI – Collective Communications 

| HPC Seminar | DESY IT, 19.11.2018

Computation of PI - Solution
...
npoints = int(sys.argv[1])
npoints_local = npoints//size

random_points = None
if rank == 0:

random_points = np.random.rand(npoints_local*size*2)

random_points_local = np.empty(npoints_local*2)
comm.Scatter(random_points, random_points_local, root=0)

count_local = get_count(random_points_local,npoints_local)

count = comm.reduce(count_local, root=0)

if rank == 0:
pi = 4.0 * (count / npoints)
print("PI: %f"%pi)
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Summary

• Splitting a problem into multiple parts is most challenging part of the parallelization 
process

• the rest is just applying appropriate library calls

• embarrassingly parallel is easy, but it is not “real HPC”

• domain decomposition is a most commonly used approach

• Several options exist in Python to write a parallel program

• mpi4py implements MPI library – general and widely used approach

• MPI starts specified amount of processes and runs an independent program instance on 
each of them

• A set of send/receive routines provides point-to-point data exchange

• Non-blocking calls may help to avoid deadlocks and be more efficient

• Collective communications efficiently distribute/collect data within many processes

| HPC Seminar | DESY IT, 19.11.2018


