
HPC Seminar

Parallelization with Python on Multiple Nodes

Sergey Yakubov - Maxwell Team - DESY IT
Hamburg, 19.11.2018

Page 2

Agenda

• Recap from the previous seminar

• Parallelization of a computational problem

• Parallelization with Python using Message Passing Interface (MPI)

• Summary

| HPC Seminar | DESY IT, 19.11.2018

Page 3

Recap from the previous seminar

• Quite often scientific Python code can be made fast
• use specific libraries (NumPy, SciPy)
• detect, isolate and compile pieces of the code that do lot of work

• numba, ...
• Python code can make use of multicore architecture

• specific libraries
• threading package for I/O bound problems
• multiprocessing package
• automatic parallelization with numba for NumPy arrays
• explicit parallelization with numba for loops

• threading module and numba

| HPC Seminar | DESY IT, 19.11.2018

Page 4

Parallelization of a computational problem

• Two ways to partition a problem

• Domain decomposition - focus on data

• Functional decomposition - focus on tasks

| HPC Seminar | DESY IT, 19.11.2018

How to partition computations to compute in parallel

CPU CPU CPU
A problem to solve

Page 5

Parallelization of a computational problem

• Domain decomposition methods
• split your geometrical/mathematical domain on multiple subdomains, each CPU take

care of a single one
• Challenges

• partition your domain most efficiently

• subdomain sizes are equal
• single process allocates memory only for its

own subdomain
• minimize boundaries
• keyword – ParMETIS

• exchange information between subdomains
• may become a bottleneck

• I/O should be parallelized as well
• Result post-processing

• Paraview, Visit, Tecplot, ...

| HPC Seminar | DESY IT, 19.11.2018

Domain Decomposition

Page 6

Parallelization of a computational problem

• Computational Fluid Dynamics

• heat transfer, mass transfer, phase change, chemical reactions

• Structural mechanics

• deformations, deflections, forces/stresses

• Climate studies

• Everything where computations with matrices
are needed

| HPC Seminar | DESY IT, 19.11.2018

Examples – Domain Decomposition

Page 7

Parallelization of a computational problem

• Function decomposition methods

• split your computational task on multiple sub-tasks, each CPU take care of a single
one

• Challenges – similar to domain decomposition

• partition your tasks most efficiently

• efforts to compute a sub-task are equal

• exchange information between sub-tasks if necessary

| HPC Seminar | DESY IT, 19.11.2018

Functional Decomposition

computing.llnl.gov

Page 8

Parallelization of a computational problem

• Signal processing

• Climate modelling

• ...

| HPC Seminar | DESY IT, 19.11.2018

Examples - Functional Decomposition

computing.llnl.gov

Page 9

Parallelization of a computational problem

• Simple (if you are lucky)

• Embarrassingly parallel

• Nearly embarrassingly parallel (e.g. master-worker)

• Complex communications between parallel processes

| HPC Seminar | DESY IT, 19.11.2018

How to exchange information between parts of a parallel problem

CPU CPU CPU
A problem to solve

Page 10

Parallelization of a computational problem

• “Embarrassingly parallel”

• no communications are needed between parallel tasks

| HPC Seminar | DESY IT, 19.11.2018

Embarrassingly Parallel

...Worker Worker Worker
A problem to solve

Page 11

Parallelization of a computational problem

• “Nearly embarrassingly parallel”

• few trivial data exchange are needed between parallel tasks

| HPC Seminar | DESY IT, 19.11.2018

Embarrassingly Parallel

Worker
A problem to solve

...Master Worker

send work to do

send results back

Page 12

Parallelization of a computational problem

• HEP – event simulation and reconstruction

• Photon science – image processing (independent)

• Rendering in computer graphics (pixels are independent)

• Face recognition system

• Simulations comparing independent scenarios

• e.g. climate models

• Discrete Fourier transform

•

| HPC Seminar | DESY IT, 19.11.2018

Embarrassingly Parallel - Examples

Page 13

Parallelization of a computational problem

| HPC Seminar | DESY IT, 19.11.2018

Complex Communications Example – Laplace equation (from introduction seminar)

Data values in neighbour points are needed to compute local value

∂2T
∂x2

+
∂2T
∂y2

= 0

Ti+1 − 2Ti +Ti−1
Δx2

#

$
%

&

'
(
j

+
Tj+1 − 2Tj +Tj−1

Δy2
#

$
%

&

'
(
i

= 0

i

j

Page 14

Parallelization of a computational problem

| HPC Seminar | DESY IT, 19.11.2018

Complex Communications Example – Laplace equation

Communications needed when points are distributed over processes

P1 P2 P3 P4

P5 P6 P7 P8

P9 P10 P11 P12

P13 P14 P15 P16

Page 15

Parallelization with Python

• There are (as often with Python) several options
• using specific frameworks for parallel data processing

• Dask, Parsl, Apache Spark, ...
• using Jupyter/IPython clusters for parallel computing
• whatever else

• ParallelPython, dispy, ray, ...
• going low(er)-level and use MPI

| HPC Seminar | DESY IT, 19.11.2018

Ways to implement parallelization

Page 16

Parallelization with Python

• There are (as often with Python) several options
• using specific frameworks for parallel data processing

• Dask, Parsl, Apache Spark, ...
• using Jupyter/IPython clusters for parallel computing
• whatever else

• ParallelPython, dispy, ray, ...
• going low(er)-level and use MPI

| HPC Seminar | DESY IT, 19.11.2018

Ways to implement parallelization

we chose this way (for today)

Page 17

MPI

• We have a program calc.py

• want to complete our simulations faster

| HPC Seminar | DESY IT, 19.11.2018

Parallelization approach

CPU
Cache

Memory

CPU
Cache

Memory

CPU
Cache

Memory

CPU
Cache

Memory

Network

calc.py

Page 18

MPI

• we have to somehow split the job

• each nodes starts its own instance of the program

• instances exchange data

| HPC Seminar | DESY IT, 19.11.2018

Parallelization approach

MPI

CPU
Cache

Memory

CPU
Cache

Memory

CPU
Cache

Memory

CPU
Cache

Memory

Network

calc.py calc.py calc.py calc.py

Page 19

MPI

• Standardized interface to a communication library

• Hides hardware/software communication mechanisms from a user

• Implements internode communications via messages

• SPMD – each process starts same program. All variables are local for each process.

| HPC Seminar | DESY IT, 19.11.2018

Overview

CPU
Cache

Memory

CPU
Cache

Memory

CPU
Cache

Memory

CPU
Cache

Memory

Network

calc.py calc.py calc.py calc.py

Message

Page 20

MPI

| HPC Seminar | DESY IT, 19.11.2018

Example

from mpi4py import MPI

comm = MPI.COMM_WORLD

size = comm.Get_size()
rank = comm.Get_rank()

print('Hello, World! I\'m process #%d of %d' % (rank, size))

Page 21

MPI

• You don‘t have to compile with Python, but you need to use same MPI version which was
used for mpi4py - module load python3.4/openmpi will do it on Maxwell.

• Execute python script via mpirun/mpiexec

• mpirun –np 4 python3 script.py
• see docs for more info

• On Maxwell we use SLURM

• one can omit number of processes and configure required resources via SLURM
parameters

• Btw, numba will not compile in @njit mode for functions using mpi4py calls.

| HPC Seminar | DESY IT, 19.11.2018

Configuring and execution

Page 22

MPI

• Let’s have a look at the first example:

/data/netapp/hpc-seminars/PythonMultiNodeParallelization/1_hello_world

• copy to your folder

• run it via SLURM – sbatch run.sh
• check output

• play with SLURM parameters and see what changes

• --nodes, --tasks, --cpus-per-task, --ntasks-per-node

• set parameters so that one instance of the program was run on two nodes

• add measuring time and print it at the end (after comm.Barrier())

• should be printed only once

| HPC Seminar | DESY IT, 19.11.2018

First Program

Finished? https://goo.gl/forms/79AlFWZXwCSqtT962

Page 23

MPI

| HPC Seminar | DESY IT, 19.11.2018

First Program - Solution

from mpi4py import MPI
import socket
import time
start = time.time()

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
node = socket.gethostname()

print('Hello, World! I\'m process #%d of %d, running on node %s' %
(rank, size,node))

comm.Barrier()

end = time.time()
if rank == 0:

print("Elapsed %.6f sec" % (end - start))

Page 24

MPI

| HPC Seminar | DESY IT, 19.11.2018

First Program - Solution

#!/bin/bash

#SBATCH --ntasks=2

#SBATCH --nodes=2

#SBATCH --partition=all

#SBATCH -t 00:01:00

module load python3.4/openmpi

#python->python3

mpirun python ./hello_world.py

Page 25

MPI

• mpi4py makes communications between processes easy
• can communicate generic Python objects (using pickle)
• can communicate buffer-like objects (NumPy arrays)

• MPI (mpi4py) supports different kinds of communications

• communication categorized by locality
• local (point-to-point)
• global (collective, all-to-all)

• communication categorized by operating mode
• blocking

• non-blocking

| HPC Seminar | DESY IT, 19.11.2018

Communications

Page 26

MPI

• MPI implements interprocess communications via messages
• Object/data to send
• Who recieves the message
• (Data type of the message)
• (Message size)

• Message Tag

• Who sent the message
• Where to store the received message

| HPC Seminar | DESY IT, 19.11.2018

Point-to-point communications

P0 P1

Network

Page 27

MPI

comm.send(obj, \ # Python object (number, dictionary, etc.)
int_dest, \ # rank of destination process
int_tag = 0) # message tag

result = comm.recv(int_source = none, \ # rank of source process

int_tag = None, # message tag
Status_status=None) # request status

• these are blocking calls – execution will stop until communication is finished

| HPC Seminar | DESY IT, 19.11.2018

Point-to-point communications – Python Object

Page 28

MPI

comm.Send(buf, \ # buffer

int_dest, \ # rank of destination process

int_tag = 0) # message tag

comm.Recv(buf, \ # buffer

int_source = none, \ # rank of source process

int_tag = None, # message tag

Status_status=None) # request status

• buf - tuple like [data, MPI.DOUBLE], or [data, count, MPI.DOUBLE] or just
data for basic C types

• buf must be preallocated with enough space

• these are blocking calls – execution will stop until communication is finished

| HPC Seminar | DESY IT, 19.11.2018

Point-to-point communications – NumPy arrays

Page 29

MPI

• Classical approach to parallel programming

• One process is a master

• The other processes are workers

• Master collects results from workers

• Uses only Send and Recv

• Point-to-point communication pattern

| HPC Seminar | DESY IT, 19.11.2018

Master-Worker Approach

MW

W

W

W

Page 30

...

start_x = a + rank * (b - a) / size
int_local = trap(start_x, h, npoints_local)

if rank == 0:
res = int_local
for i in range(1, size):

tmp = comm.recv(source = i)
res = res + tmp

print("Result: %.5f "%res)
else:

comm.send(int_local, 0)

MPI

| HPC Seminar | DESY IT, 19.11.2018

Integration in parallel

Finished? https://goo.gl/forms/79AlFWZXwCSqtT962

f (x)dx
a

b

∫
/data/netapp/hpc-seminars/PythonMultiNodeParallelization/2_integration

Page 31

MPI

• communication between processes can result in deadlock

| HPC Seminar | DESY IT, 19.11.2018

Deadlocks

other = 1 if rank == 0 else 0;
comm.Send(data_send,other);
comm.Recv(data_recv,other);

Page 32

MPI

• /data/netapp/hpc-seminars/PythonMultiNodeParallelization/3_deadlock
• copy to your folder, compile, run with two MPI processes (without SLURM or via an

interactive job)
• do you get deadlock?
• correct the program

| HPC Seminar | DESY IT, 19.11.2018

Deadlock

Finished? https://goo.gl/forms/79AlFWZXwCSqtT962

Page 33

MPI

| HPC Seminar | DESY IT, 19.11.2018

Deadlock - Solution

from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

neighbour = 1 if rank == 0 else 0

if rank == 0:
res = comm.recv(source = neighbour)
comm.send(1-rank,neighbour)

else:
comm.send(1-rank,neighbour)
res = comm.recv(source = neighbour)

print("received %d from %d"%(res,neighbour))

Page 34

MPI

• Motivation

• Avoids deadlocks

• Simplifies programming

• Reduces syncronization

• May allow to overlap communication and computation

• Requires additional request handle

• Created for each nonblocking communication call

• Used to check the communication state (wait/test operation)

| HPC Seminar | DESY IT, 19.11.2018

Non-blocking communications

Page 35

MPI

• Non-blocking send

• r1 = comm.isend(obj, int_dest, int_tag = 0)

• r1 = comm.Isend(buf, int_dest, int_tag = 0)

• Non-blocking receive

• r2 = comm.irecv(int_source = none, int_tag = None)

• r2 = comm.Irecv(buf, int_source = none, int_tag = None)

• Wait operations to finish

• r1.wait()
• r1.Wait()
• r2.Wait()
• result = r2.wait()
or

• MPI.Request.Waitall([r1, r2])

| HPC Seminar | DESY IT, 19.11.2018

Non-blocking communications

Page 36

MPI – Non-blocking Communications

• /data/netapp/hpc-seminars/PythonMultiNodeParallelization/4_nonblocking

• rewrite the program using non-blocking calls

| HPC Seminar | DESY IT, 19.11.2018

Deadlock

Finished? https://goo.gl/forms/79AlFWZXwCSqtT962

Page 37

MPI – Non-blocking Communications

| HPC Seminar | DESY IT, 19.11.2018

Deadlock - solution

from mpi4py import MPI

comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()

neighbour = 1 if rank == 0 else 0

req_wait = comm.irecv(source = neighbour)
req_send = comm.isend(1-rank,neighbour)

res = req_wait.wait()
req_send.wait()

print("received %d from %d"%(res,neighbour))

Page 38

MPI - Collective Communications

• Three types:

• Synchronization (Barrier)

• Data exchange (Scatter, Gather, Alltoall, Allgather)

• Reductions (Reduce, Allreduce, Reduce_scatter)

• Usually blocking (non-blocking also possible)

• Can be implemented with point-to-point calls

• Collective implementation is usually better optimized (tree-based algorithms, etc.)

| HPC Seminar | DESY IT, 19.11.2018

Page 39

Barrier

• Explicit syncronization

• Block the process until all processes in the communicator called it

• Usually not needed

• Syncronization is done implicitly by other communication calls

• Can be used for debugging, profiling, etc.

comm.Barrier()

| HPC Seminar | DESY IT, 19.11.2018

Page 40

Broadcast

• One process (root) sends data to all others

result = comm.bcast(obj, int_root = 0)
comm.Bcast(buf, int_root = 0)

0 21 3
A B C D

0 21 3
A B C DA B C D A B C D A B C D

Be
fo

re
Af

te
r

| HPC Seminar | DESY IT, 19.11.2018

Page 41

Reduce

• Op_Op (MPI.SUM (default) , MPI.MAX, MPI.MIN, MPI.PROD, or user
defined)

result = comm.reduce(sendObj,Op_op = None, int_root = 0)
comm.Reduce(sendbuf, recvbuf,Op_op = None, int_root = 0)

0 21 3

0 21 3
A+B+C+D

A B D

A B C D

C

Be
fo

re
Af

te
r

| HPC Seminar | DESY IT, 19.11.2018

Page 42

MPI

| HPC Seminar | DESY IT, 19.11.2018

Integration in parallel

Finished? https://goo.gl/forms/79AlFWZXwCSqtT962

• /data/netapp/hpc-seminars/PythonMultiNodeParallelization/5_integration_collective

• rewrite the program using comm.reduce

Page 43

...
int_local = trap(start_x, h, npoints_local)
res = comm.reduce(int_local, root=0)

if rank == 0:
print("Result: %.5f "%res)

MPI

| HPC Seminar | DESY IT, 19.11.2018

Integration in parallel - solution

Page 44

Scatter

• One process scatters data to all others (including itself)

0 21 3
A B C D

0 21 3
A B C D

A B C D

Be
fo

re
Af

te
r

result = comm.scatter(sendObj, int_root = 0)
comm.Scatter(sendbuf, recvbuf, int_root = 0)

| HPC Seminar | DESY IT, 19.11.2018

Page 45

Gather

• One process gathers data from all others (including itself)

0 21 3

0 21 3
A B C D

A B D

A B C D

C

Be
fo

re
Af

te
r

result = comm.gather(sendObj, int_root = 0)
comm.Gather(sendbuf, recvbuf, int_root = 0)

| HPC Seminar | DESY IT, 19.11.2018

Page 46

MPI – Collective Communications

• /data/netapp/hpc-seminars/PythonMultiNodeParallelization/6_pi
• Create random points in process 0
• send them to other processes (use comm.Scatter)
• compute part of Pi on every process, use comm.reduce to get Pi.

| HPC Seminar | DESY IT, 19.11.2018

Computation of Pi

Finished? https://goo.gl/forms/79AlFWZXwCSqtT962

! = 4 $%&'%()$*+,-')
≈ 4 /&0_%&'%()/&0_*+,-')

Page 47

MPI – Collective Communications

| HPC Seminar | DESY IT, 19.11.2018

Computation of PI - Solution
...
npoints = int(sys.argv[1])
npoints_local = npoints//size

random_points = None
if rank == 0:

random_points = np.random.rand(npoints_local*size*2)

random_points_local = np.empty(npoints_local*2)
comm.Scatter(random_points, random_points_local, root=0)

count_local = get_count(random_points_local,npoints_local)

count = comm.reduce(count_local, root=0)

if rank == 0:
pi = 4.0 * (count / npoints)
print("PI: %f"%pi)

Page 48

Summary

• Splitting a problem into multiple parts is most challenging part of the parallelization
process

• the rest is just applying appropriate library calls

• embarrassingly parallel is easy, but it is not “real HPC”

• domain decomposition is a most commonly used approach

• Several options exist in Python to write a parallel program

• mpi4py implements MPI library – general and widely used approach

• MPI starts specified amount of processes and runs an independent program instance on
each of them

• A set of send/receive routines provides point-to-point data exchange

• Non-blocking calls may help to avoid deadlocks and be more efficient

• Collective communications efficiently distribute/collect data within many processes

| HPC Seminar | DESY IT, 19.11.2018

