

Working with Pixels

Made by Baragli Lisa, Gori Sara and Maffei Annalisa Supervisor: Zoi Irene

Istituto Statale di Istruzione Secondaria Superiore

Pixels and silicon

The third most abundant element on Earth!

8×8 mm active area

With them you can know **where** the particles went through.

Pixels are made by silicon

- Semiconductor
- Bounds among silicon atoms can break and an electron-hole

pair is created.

The different kinds of Silicon

N-type semiconductor

- donor of electron
- free carrier (n)
- ion +

p-type (Si+4 (Si⁺⁴ (Si⁺⁴ single negative ion (B+3) (Si+4 (Si+4 • free mobile hole (Si+4 (Si+4 (Si⁺

P-type semiconductor

- acceptor of electron
- free carrier + (p)
- ion -

The P-N junction

If we put together **Si-p** and **Si-n**, the free charges mix between them.

Depletion zone where we can track particles because there are only ions.

What is a **Pixel detector**?

The detector is used to collect data about charged particles.

Test Beam

In the Test Beam the electrons that come from the particles accelerator collide with

pixels.

Aligning the three sensors we can create the track.

Dreimaster

Collected charge

C cluster charge on tracks

Resolution Data

dx = residuals

Through many measurements we obtain the **residuals' distribution**.

Residual distribution

triplet dx, cut dy, isolated, q3 < qR

How does the resolution change?

Cloud Chamber

This is another instrument to see particles and thanks to their **shape of track** we can recognise the different kind of particles.

Thanks for your attention