

Content

- Introduction, task description
- Field models for different types of undulators;
- Selection of fitting parameters
- Undulator parameter studies for the high photon energy FEL at the European XFEL
- Preliminary FEL simulations of 1st and 3rd Harmonic
- Summary

Introduction

Workshop "Shaping the Future of the European XFEL: Options for the SASE4/5 Tunnels" 07Dec2018

- Problem: What is the suitable undulator technology for the super high (>= 50KeV) photon energies at EuXFEL?
- Content: Assessment and comparison of short period undulator technologies SC vs PM in VAC -> Focus on feasible technologies

Fitting formulae for the undulator peak field

ΡM

(Halbach, Nucl. Instr. Meth. 187(1981) Journal de Physique 44, Colloque C1 (1983) 211)

$$B_{peak} = ae^{b\frac{g}{\lambda_u} + c\left(\frac{g}{\lambda_u}\right)^2}$$

- ♦ B_y is proportional to the magnet remanence, $a \propto B_r$
- PM systems are scalable; work for small dimensions as well

EM, SCU

(S. H. Kim, Nucl. Instr. Meth. A 546(2005))

$$B_{peak} = (a + b\lambda_u + c\lambda_u^2 + d\lambda_u^3)e^{-\pi\left(\frac{g}{\lambda_u} - \frac{g_0}{\lambda_u}\right)}$$

- B_y is proportional to the current j_c times cross section
- ♦ B_y is scales ≈ ≈ with $j_c \lambda_u$; the smaller λ_u the higher j_c !

Field model for Hybrid PM undulators

- Beam clear gap = 7mm \rightarrow IVU magnet gap= Beam clear gap g = 7mm
- Fitting parameters taken from an optimized hybrid structure: EuXFEL U40 / SASE2

Workshop "Shaping the Future of the European XFEL: Options for the SASE4/5 Tunnels" 07Dec2018

The practical data of different UNDs from different labs agrees with the fitting curve quite good.

Workshop "Shaping the Future of the European XFEL: Options for the SASE4/5 Tunnels" 07Dec2018

Field model for Superconducting undulators (SCU)

- Beam clear gap = 7mm → magnetic gap =beam clear gap + 2mm g = 9mm
- SCU using NbTi (data from G. Efim, 0.8*j*_c is used)

⁽S. H. Kim, Nucl. Instr. Meth. A 546(2005))

Comparison of the IVU and SCU

- The models are used for the comparison @ two gaps (5.5 mm VS 7.5mm) and (7mm VS 9mm)
- SCU shows clear advantages for NbTi only at the period longer than about 13 mm.

Target lasing @ 0.25 Å 50 keV

E = 17.5GeV ∆E=1.5MeV Peak current = 5000A $\varepsilon_n = 0.4mm mrad$

Example: Minimum gap 7mm Tuning factor 4, from 0.25~1.0 Å IVU NbFeB, CPMU, SCU(NbTi)

0.25-1Å	IVU / NdFeB	CPMU	SCU (NbTi)
Large Gap [mm]	15.5	14.2	13
λ for 1Å @ 7mm [mm]	31.5	28	22
L _{gain} [m]	15	13	9.5

Period & Gain Lengths of different Designs for $\lambda_{_{Rad}}^{}$ = 0.25 Å unnels" 18 -46 16 14 40 ح_ L_{Gain} @ 0.25 Å [m] 12 38 IVU NbFeB 8 36 10-IVU NbFeB 0.25Å **´ĆPMU** 8 SCU 6-[mm] 30 4 26 SCU 2 24 0 22 10 12 14 16 18 20 6 8 16 Solid: IVU NbFeB : 0.25Å Dash: CPMU 2: 0.50Å dot: SCU 14-**3**: 0.75Å 12-10 **4**: 0.10Å 8 6 18 10 12 16 20 6 8 14

European XFEL

Gap1 for 0.25 Å [mm]

Gap2 [mm] for 0.25Å x Tuning Factor

8

Target lasing @ 0.15 Å

E = 17.5GeV Δ E=1.5MeV Peak current = 5000A $\varepsilon_n = 0.4mm mrad$

Example: Minimum gap 7mm Tuning factor 4, 0.15~0.6 Å IVU NbFeB, CPMU, SCU(NbTi)

0.15-0.6Å	IVU / NdFeB	CPMU	SCU (NbTi)
Large Gap [mm]	17.8	15.9	14
λ for 0.6Å @ 7mm [mm]	28	25	20.5
L _{gain} [m]	32	25	15

European XFEL

0.15 Å Tuneability: 4 21....82 keV

0.15-0.6Å	IVU / NdFeB	CPMU	SCU (NbTi)
Large Gap [mm]	17.8	15.9	14 (K=3.43)
λ for 0.6Å @ 7mm [mm]	28	25	20.5
L _{gain} [m]	32	25	15

0.15 Å Tuneability: 2 41.... 82 keV

0.15-0.3Å	IVU / NdFeB	CPMU	SCU (NbTi)
Large Gap [mm]	11.6	11.0	10.2 (K=2.44)
λ for 0.3Å @ 7mm [mm]	23.5	21	18
L _{gain} [m]	20.5	16.5	13

0.25 Å Tuneability: 4 12.4....50 keV

0.25-1Å	IVU / NdFeB	CPMU	SCU (NbTi)
Large Gap [mm]	15.5	14.2	13 (K=4.39)
λ for 1Å @ 7mm [mm]	31.5	28	22
L _{gain} [m]	15	13	9.5

0.25 Å Tuneability: 2 25....50 keV

0.25-0.5Å	IVU / NdFeB	CPMU	SCU (NbTi)
Large Gap [mm]	10.8	10.2	9 (K=3.15)
λ for 0.5Å @ 7mm [mm]	26.2	24	19.7
L _{gain} [m]	11.9	11.1	8.4

The Feasibility Study for short period Undulators for the SASE4/5 Tunnel Workshop "Shaping the Future of the European XFEL: Options for the SASE4/5 Tunnels" 07Dec2 Period & Gain Lengths of different Designs for $\lambda_{_{Rad}}$ = 0.15 Å Gain curve of U18 @ 0.15 Å (fundamental) IVU NbFeB 30 10¹⁰ L_{Gain} @ 0.<mark>1</mark>5 Å [m] Genesis 1.3 20 -10⁹ 10 IVU NbFeE Power (W) 10⁸ CÉM SCU Example: 10⁷ 10 12 14 8 Tuneability 1; gap: 6mm Hybrid 16 Gap2 [mm] for 0.15Å x Tuning Factor 10⁶ 14 U18: $\lambda_r = 0.15A$ Time Dependent Sim. 12 10⁵ 50 100 150 200 250 0 10-Und. Length (m) 8 Saturation length ~150m Saturation power ~ 5×10^9 W 10 12 14 6 8 Gap1 for 0.15 Å [mm]

11

CPMU 35

حے

8

0

1**5**Å [mm]

2: 0.30Å

3: 0.45Å

4: 0.60Å

15

20

SCU

16

16

18

20

18

: 0.15Å

Workshop "Shaping the Future of the European XFEL: Options for the SASE4/5 Tunnels" 07Dec2018

Fundamental and 3rd harmonic SASE of U40 @ 0.15 Å

Saturation length ~150m

- Saturation power of 0.15 Å ~ 2×10^8 W
- Could be achieved with existing SASE2

Workshop "Shaping the Future of the European XFEL: Options for the SASE4/5 Tunnels" 07Dec2018

3rd harmonic SASE of U40 @ 0.15 Å by suppressing the fundamental

(E. Schneidrmiller, M. Yurkov, Phys. Rev. ST-AB 15(2012))

Ideal beam with zero energy spread & emittance works well

3D simulation shows long saturation length ~400m

13

Workshop "Shaping the Future of the European XFEL: Options for the SASE4/5 Tunnels" 07Dec2018

Conclusion

- EuXFEL is a unique facility for a Hard X-ray FEL. About 80keV (0.15 Å) are feasible in the fundamental
- Tuneability requirements are important: 80keV, factor 1 only choice for NdFeB. Higher tuneability requires CPMU or SCU High tuneability, factor 4 requires SCU.
- SCU systems may be shorter by up to \approx 40% compared to IVU, CPMU
- For given technology shortest wavelength and tuneability determine the undulator parameters. Shorter wavelength \rightarrow lower tuneability \rightarrow higher demands on field
- Using the non-linear harmonic SASE is promising: Existing SASE2 reaches 3x10⁸W at 0.15 Å. A dedicated U18 reaches 5x10⁹W: Needs more R&D: