Super-X: Simulations for super-hard X-ray generation with short period undulators for the EuXFEL

Svitozar Serkez et al, EuXFEL, SPF, 06.12.2018

1

Intro

Takanori Tanikawa

"The Simulation of Photon Fields (SPF) Group devises and assesses novel advanced FEL schemes for improving the characteristics of the photon beams at the European XFEL."

This Workshop: three talks from my group [with substantial contribution and support from Sara Casalbuoni (KIT), Michael Gensch (HZDR), Suren Karabekyan (EuXFEL), Vitali Kocharyan (DESY), Shan Liu (DESY), Evgeni Saldin (DESY), Nikola Stojanovic (DESY), Patrik Vagovic (EuXFEL), and many others...]

13:00 – 13:30	Svitozar Serkez, Gianluca Geloni (European XFEL) "Super-X: Simulations for the Super-Hard X-ray Generation with Short Period Undulators for the European XFEL"	Now
09:30 – 10:00	Takanori Tanikawa (European XFEL) "External Seeding Possibilities at the European XFEL (EEHG and HGHG) and THz Addition"	Tomorrow
13:30 – 14:00	Gianluca Geloni (European XFEL) "Self-seeding: Energy-Range Limits and Possibilities"	Tomorrow

There is a guiding idea linking these talks...

European XFEL

3

Plus THz Pump-probe possibilities between 3 THz and 40 THz

European XFEL

4

Fresh bunch needed...

- Many of the additions proposed require high-field and/or short period undulators
- One possibility: Superconducting Undulator Technology

Verbundprojekt FuE für Erforschung der Materie an Großgeräten 2019-2022: Supraleitende Undulatoren für die European XFEL

> Vorhabenbeschreibung Antragsteller: Prof. Dr. Anke-Susanne Müller¹, Prof. Dr.-Ing. Herbert De Gersem²

"Aim of this project is to explore the benefits of applying superconducting undulators to the European XFEL"

Proposed by KIT and TUD

Super-X: Simulations for super-hard X-ray generation with short period undulators for the European XFEL

Svitozar Serkez, Takanori Tanikawa, Sara Casalbuoni Sergey Tomin, Suren Karabekyan, Gianluca Geloni

- Necessary assumptions
 - Electron beam
- Space available
- Undulator technology
- Analytical estimations
- Quantum fluctuations
- Comparison with harmonic lasing
- Period doubling
- CW operation
- Magnetic field tolerances

- Spread of SASE spectrum
- Radiation spatial coherence
- E-beam quality revisited
- 100keV numerical case study (incl. all detrimental effects)

Conclusions

*Analytical estimation and post-processing of numerical simulations done with OCELOT https://github.com/ocelot-collab/ocelot

E-beam assumptions

I _{peak} =5kA
E=17.5GeV
dE = 1MeV (dγ = 1.9)
Emittance=0.4 mm mrac

Streaked bunches on the four off-axis screens	We are able to match single s the bunch. One matching itera takes about 2 minutes includin magnet cycling.
	slice emittance
-500 0 500 -500 0 500 -500 0 500 -500 0 500 × [μm] × [μm] × [μm] × [μm]	
The smallest slice emittances achieved so far (four-screen method): 0.6 µm rad with 53 MV/m gun gradient (500 pC	Slice emittance measurem
0.4 µm r2d with 60 MV/m gun gradiert (400 pC	-0 2 4 6 8 10 12 Slice index

Slice Emittance Measurements

slices of ation ing the

B. Beutner European XFEL Injector Commissioning Results, talk at International FEL Conference, Santa Fe (2017), slide of M.Scholz

Summary

Slice emittance in x/y plane, μ m

Position	500 <u>pC</u> , 5kA	500 <u>pC</u> , 10 kA	250 pC, 5 kA	100 <u>pC</u> , 5 kA
after injector booster	0.50	0.50	0.36	0.18
after collimator	0.57	0.57 / 0.75	0.40	0 24 / 0 30
after T1 arc (before SASE2)	0.57	0.57 / 0.75	0.40	0.24 / 0.30

Projected emittance in x/y plane, μ m

Position	500 pC, 5kA	500 pC, 10 kA	250 pC, 5 kA	100 <u>pC</u> , 5 kA
after injector booster	0.84	0.84	0.67	0.30
after collimator	1.15 / 1.21	1.10 / 2.93	0.80 / 1.37	0.30 / 0.82
after T1 arc (before SASE2)	1.35 / 1.16	2.64 / 2.52	1.34 / 1.26	0.83 / 0.73

In the simulations we have used the laser heater in the injector to provide 1 MeV slice energy spread after BC2

Talk by Igor Zagorodnov

European XFEL

Svitozar Serkez et al, EuXFEL, SPF, 06.12.2018

Tunnel location and length (XTD3/SASE4)

Photos from http://xfelmd.desy.de/vtour/

11

Undulator technologies

- [1] M. Turenne, C. Boffo, S. Casalbuoni, private communication
- [2] J. Bahrdt and E. Gluskin, "Cryogenic permanent magnet and superconducting undulators," Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 907, no. March, pp. 149–168, Nov. 2018.
- [3] S. Casalbuoni, et. al., "Magnetic Field Measurements of Full-Scale Conduction-Cooled Superconducting-Undulator-Coils," IEEE Trans. Appl. Supercond., vol. 28, no. 3, pp. 3–6, 2018.
- [4] S. Casalbuoni, et.al., "Characterization and long term operation of a novel superconducting undulator with 15 mm period length in a synchrotron light source," Phys. Rev. Accel. Beams, vol. 19, no. 11, p. 110702, Nov. 2016.
- [5] S. Casalbuoni, et.al., "Superconducting Undulators: From Development towards a Commercial Product," *Synchrotron Radiat. News*, vol. 31, no. 3, pp. 24–28, May 2018.
- [6] R. Dejus, M. Jaski, and S. H. Kim, "On-axis brilliance and power of in-vacuum undulators for the Advanced Photon Source.," Argonne, IL (United States), Nov. 2009.

Methods to estimate FEL performance (3D gain length)

13

M. Xie, "Exact and variational solutions of 3D eigenmodes in high gain FELs," Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 445, no. 1–3, pp. 59–66, 2000.

Saturation length and Accuracy

Saturation length and number of photons/femtosecond at saturation

Results of numerical simulation (Genesis v2)

Estimated number of photons at the end of undulator

Rough estimation, assuming no growth after- and exponential growth before saturation

European XFEL

17

Estimated number of photons at the end of undulator

Rough estimation, assuming no growth after- and exponential growth before saturation

Range of accessible photon energies

19

Effect of Quantum fluctuations at 17.5 GeV

$$\frac{\mathrm{d}\sigma_{\gamma}^2}{\mathrm{d}z} = \frac{14}{15} \chi_{\mathrm{c}} r_{\mathrm{e}} \gamma^4 \kappa_{\mathrm{w}}^3 K^2 F(K)$$

FEL Gain at photon energies beyond 75keV is affected

$$\delta_q = 5.5 \times 10^4 \left(\frac{I_A}{I}\right)^{3/2} \frac{\lambda_c r_e \epsilon_n^2}{\lambda_r^{11/4} \lambda_w^{5/4}} \frac{(1+K^2)^{9/4} F(K)}{K A_{JJh}^3 h^{5/3}} \qquad \delta_{\text{eff}} = \frac{\delta + \delta_q}{1 - \delta_q}$$

[1] J. Rossbach, E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, "Fundamental limitations of an X-ray FEL operation due to quantum fluctuations of undulator radiation," Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 393, no. 1–3, pp. 152–156, 1997.

[2] E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, "Design formulas for short-wavelength FELs," Opt. Commun., vol. 235, no. 4–6, pp. 415–420, May 2004.

European XFEL

Effect of Quantum fluctuations at 17.5 GeV, 100keV

Undulator period doubling

$$\lambda_r = \frac{\lambda_u[m] + (93B_{rms}[T])^2 \lambda_u^3[m]}{2\gamma^2}$$

Svitozar Serkez et al, EuXFEL, SPF, 06.12.2018

Increasing undulator period allows to significantly reduce resonant photon energy

Figure 1: Sketch of period length doubling for superconducting undulators by changing the current direction in one subset of windings. T. Holubek, S. Casalbuoni, S. Gerstl, N. Glamann, A. Grau, C. Meuter, and D. S. de Jauregui, "Design and Tests of Switchable Period Length Superconducting Undulator Coils," in IPAC, 2018, pp. 4226–4228.

Undulator period doubling (17.5GeV)

CW operation (7.8 GeV)

XFEL accelerator.

Operation mode	E _{beam} [GeV]	E _{acc} in ML [MV/m]	Beam-on DF [%]
sp (nominal)	19.8	23.4	0.6
CW	7.8	7.3	100
lp	10	10	53
lp	14	15	23

TABLE VI. Beam energy and DF estimated for the upgraded

 $\lambda_r = \frac{\lambda_u[m] + (93B_{rms}[T])^2 \lambda_u^3[m]}{2\gamma^2}$

[1] J. Sekutowicz, V. Ayvazyan, M. Barlak, J. Branlard, W. Cichalewski, W. Grabowski, D. Kostin, J. Lorkiewicz, W. Merz, R. Nietubyc, R. Onken, A. Piotrowski, K. Przygoda, E. Schneidmiller, and M. Yurkov, "Research and development towards duty factor upgrade of the European X-Ray Free Electron Laser linac," Phys. Rev. Spec. Top. - Accel. Beams, vol. 18, no. 5, pp. 1–9, 2015.

[2] R. Brinkmann, E. A. Schneidmiller, J. Sekutowicz, and M. V. Yurkov, "Prospects for CW and LP operation of the European XFEL in hard X-ray regime," Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 768, pp. 20–25, Mar. 2014.

7.8 GeV

CW operation (7.8 GeV)

3.0

2.5

2.0

1.5

1.0

0.5 -

10

B_{peak} [T]

$$h\lambda_{wh}(1+K_h^2) = \lambda_{wSC}(1+K_{SC}^2)$$

$$L_{g0SC} = 1.67 \left(\frac{I_A}{I}\right)^{1/2} \frac{(\epsilon_n \lambda_{wSC})^{5/6}}{\lambda_t^{2/3}} \frac{(1 + K_{SC}^2)^{1/3}}{KA_{JJSC}}$$

$$L_{g0h} = 1.67 \left(\frac{I_A}{I}\right)^{1/2} \frac{(\epsilon_n \lambda_{wh})^{5/6}}{\lambda_t^{2/3}} \frac{(1 + K_h^2)^{1/3}}{h^{5/6} K A_{JJh}}$$

E. A. Schneidmiller and M. V. Yurkov, "Harmonic lasing in x-ray free electron lasers," Phys. Rev. Spec. Top. - Accel. Beams, vol. 15, no. 8, p. 080702, Aug. 2012.

Harmonic lasing is superior for the same combination of λ_u and E_{photon}

Harmonic lasing is superior for the same combination of λ_u and E_{photon}

28

Comparison with harmonic lasing

Comparison with λ_u =15mm at fundamental

Comparison with harmonic lasing

Comparison with λ_u =20mm at fundamental

Super-X: Simulations for super-hard X-ray generation with short period undulators for the EuXFEL

Effect of undulator field errors $\overset{\lambda_{u}}{\leftarrow}$

European XFEL

Svitozar Serkez et al, EuXFEL, SPF, 06.12.2018

 $\sigma_K/K=0.3\%$ period-wise field error (rms)

S. Casalbuoni, N. Glamann, A. Grau, T. Holubek, D. S. de Jauregui, C. Boffo, T. Gerhard, M. Turenne, and W. Walter, "Magnetic Field Measurements of Full-Scale Conduction-Cooled Superconducting-Undulator-Coils," IEEE Trans. Appl. Supercond., vol. 28, no. 3, pp. 1–4, Apr. 2018.

Y. Li, B. Faatz, and J. Pflueger, "Study of undulator tolerances for the European XFEL," 29th Int. Free Electron Laser Conf. FEL 2007, pp. 330–333, 2007.

Super-X: Simulations for super-hard X-ray generation with short period undulators for the EuXFEL

Svitozar Serkez et al, EuXFEL, SPF, 06.12.2018

European XFEL

S. Casalbuoni, N. Glamann, A. Grau, T. Holubek, D. S. de Jauregui, C. Boffo, T. Gerhard, M. Turenne, and W. Walter, "Magnetic Field Measurements of Full-Scale Conduction-Cooled Superconducting-Undulator-Coils," IEEE Trans. Appl. Supercond., vol. 28, no. 3, pp. 1–4, Apr. 2018.

Y. Li, B. Faatz, and J. Pflueger, "Study of undulator tolerances for the European XFEL," 29th Int. Free Electron Laser Conf. FEL 2007, pp. 330–333, 2007.

Effect of undulator field errors

Ê

Svitozar Serkez et al, EuXFEL, SPF, 06.12.2018

Super-X: Simulations for super-hard X-ray generation with short period undulators for the EuXFEL

Effect of undulator field errors

Svitozar Serkez et al, EuXFEL, SPF, 06.12.2018

100keV = 0.12 Angstom

Spread of SASE spectrum (beam energy chirps & resistive wakefields)

Super-X: Simulations for super-hard X-ray generation with short period undulators for the EuXFEL

Transverse coherence (17mm period)

Radiation fields simulated with Genesis (ε_{xy}=0.4urad, z=150m)

 $J(r_1, r_2, t) \equiv \langle E^*(r_1, t)E(r_2, t) \rangle$ Mutual intensity function $\zeta_s = \frac{\int |J(r_1, r_2)|^2 dr_1 dr_2}{\left(\int I(r) dr\right)^2}$

 $\int I(r)dr$ Degree of spatial coherence

Also depends on electron beam quality

European XFEL

E-beam quality effect, 100keV, 15mm period

Emittance / 2 = Energy spread * 7
100keV S2E simulation:

0

Spectrum [a.u.]

1.2

1.4

39

Summary 1: Undulator

Summary 2

Our findings are based on two analytical approaches (SSY, Mxie) and two codes (Genesis, Simplex [T.Tanikawa])

- Potential detrimental effects on lasing:
 - E-beam quality is crucial (in particular: emittance < 0.4urad); it affects choice of the period
 - Quantum fluctuations important beyond 75keV at 17.5GeV
 - Undulator errors >> ρ can be compensated
 - Resistive wakefields and energy chirps in e-beam increase radiation bandwidth
 - Radiation coherence rapidly drops with photon energy and beam emittance
- At CW operation 18mm SCU complements SASE1/2 undulator photon energy range
- Period doubling is possible and allows one to significantly increase photon energy range at given e-beam energy
- SCU radiation damage (probably) smaller compared to IVU/CPMU
- Harmonic lasing becomes beneficial with 20mm SCU
- But the most important...

European XFEL

Reaching 100keV in EuXFEL is possible!

/10keV used to be Sci-fi/

Super-X: Simulations for super-hard X-ray generation with short period undulators for the EuXFEL

Svitozar Serkez et al, EuXFEL, SPF, 06.12.2018

Thank you

Super-X: Simulations for super-hard X-ray generation with short period undulators for the EuXFEL

Svitozar Serkez et al, EuXFEL, SPF, 06.12.2018

E-beam

Beam Dynamics at the European XFEL up to SASE4/5

Igor Zagorodnov, 06.12.2018

100pC

Svitozar Serkez et al, EuXFEL, SPF, 06.12.2018

250pC

44

European XFEL

Methods to estimate FEL performance (3D gain length)

Saldin, Schneydmiller, Yurkov

$$L_g \simeq L_{g0}(1+\delta),$$

$$L_{g0} = 1.67 \left(\frac{I_A}{I}\right)^{1/2} \frac{(\epsilon_n \lambda_w)^{5/6}}{\lambda_h^{2/3}} \frac{(1+K^2)^{1/3}}{h^{5/6}KA_{JJh}},$$

$$\delta = 131 \frac{I_A}{I} \frac{\epsilon_n^{5/4}}{\lambda_h^{1/8} \lambda_w^{9/8}} \frac{h^{9/8}\sigma_\gamma^2}{(KA_{JJh})^2 (1+K^2)^{1/8}}$$

$$A_{JJh}(K) = J_{(h-1)/2} \left(\frac{hK^2}{2(1+K^2)}\right) - J_{(h+1)/2} \left(\frac{hK^2}{2(1+K^2)}\right)$$

E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, "Design formulas for shortwavelength FELs," Opt. Commun., vol. 235, no. 4–6, pp. 415–420, May 2004.

E. A. Schneidmiller and M. V. Yurkov, "Harmonic lasing in x-ray free electron lasers," *Phys. Rev. Spec. Top. - Accel. Beams*, vol. 15, no. 8, p. 080702, Aug. 2012.

M.Xie

$$\begin{aligned} \frac{L_{1d}}{L_g} &= \frac{1}{1+\Lambda} \\ L_{1d} &= 1/2\sqrt{3}k_w\rho \\ \rho &= \sqrt[3]{(I/I_A)(\lambda_w a_w f_B/2\pi\sigma_x)^2(1/2\gamma_0)^3} \\ \Lambda &= a_1\eta_d^{a_2} + a_3\eta_{\epsilon}^{a_4} + a_5\eta_{\gamma}^{a_6} \\ &+ a_7\eta_{\epsilon}^{a_8}\eta_{\gamma}^{a_9} + a_{10}\eta_d^{a_{11}}\eta_{\gamma}^{a_{12}} + a_{13}\eta_d^{a_{14}}\eta_{\epsilon}^{a_{15}} \\ &+ a_{16}\eta_d^{a_{17}}\eta_{\epsilon}^{a_{18}}\eta_{\gamma}^{a_{19}} \qquad \eta_d = 1/F_d \\ \eta_{\epsilon} &= 4\pi(L_{1d}/\bar{\lambda}_{\beta})k_r\epsilon \\ \eta_{\gamma} &= 4\pi(L_{1d}/\lambda_w)\sigma_\eta \end{aligned}$$

M. Xie, "Exact and variational solutions of 3D eigenmodes in high gain FELs," Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 445, no. 1–3, pp. 59–66, 2000.

Methods to estimate FEL performance (3D gain length)

M. Xie, "Exact and variational solutions of 3D eigenmodes in high gain FELs," Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 445, no. 1–3, pp. 59–66, 2000.

 $L_a^{3d} = L_g^{1d}(1+\delta)$

European XFEL

Super-X: Simulations for super-hard X-ray generation with short period undulators for the EuXFEL

Svitozar Serkez et al, EuXFEL, SPF, 06.12.2018

Methods to estimate FEL performance (~3D efficiency)

47

Saldin, Schneydmiller, Yurkov

M.Xie

E. L. Saldin, E. A. Schneidmiller, and M. V. Yurkov, "Design formulas for shortwavelength FELs," Opt. Commun., vol. 235, no. 4–6, pp. 415–420, May 2004.

M. Xie, "Exact and variational solutions of 3D eigenmodes in high gain FELs," Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip., vol. 445, no. 1–3, pp. 59–66, 2000.

Accuracy

The formulas (3)–(5) provide an accuracy better than 5% in the range of parameters

$$1 < \frac{2\pi\epsilon}{\lambda_h} < 5, \tag{6}$$

$$\delta < 2.5 \left\{ 1 - \exp\left[-\frac{1}{2} \left(\frac{2\pi\epsilon}{\lambda_h} \right)^2 \right] \right\}.$$
 (7)

In fact, the formulas (3)–(5) can also be used well beyond this range, but the above-mentioned accuracy is not guaranteed.

E. A. Schneidmiller and M. V. Yurkov, "Harmonic lasing in x-ray free electron lasers," *Phys. Rev. Spec. Top. - Accel. Beams*, vol. 15, no. 8, p. 080702, Aug. 2012.

European XFEL

Effect of beam energy chirps & resistive wakefields

Wakefield calculated with OCELOT assuming:

self.eloss = pipe_wake(self.s, self.l, tube_radius, tube_len, conductivity, tau, roughness, d_oxid)[1][1][::-1]

Optimal Beta Functions

E-beam quality effect, 100keV, 15mm period

E-beam quality effect, 75keV, 17mm period

E-beam quality effect, 50keV, 18mm period

Beam after SASE4:

15.0

12.5

10.0

7.5

5.0

Optimistic scenario (SP mode, 19.8 GeV, 0.2mm*mrad beam)

19.8 GeV

FABLE VI.	Beam	energy	and	DF	estimated	for	the	upgraded
XFEL acceler	ator.							

Operation mode	E _{beam} [GeV]	$E_{\rm acc}$ in ML [MV/m]	Beam-on DF [%]
sp (nominal)	19.8	23.4	0.6
CW	7.8	7.3	100
lp	10	10	53
<u>lp</u>	14	15	23

At optimistic electron energy and emittance parameters one can expert to reach beyond 100keV

Planar vs Helical undulator

Optimistic scenario (SP mode, 19.8 GeV, 0.2mm*mrad beam)

19.8 GeV

FABLE VI.	Beam	energy	and	DF	estimated	for	the	upgraded	
XFEL acceler	ator.								

Operation mode	E _{beam} [GeV]	$E_{\rm acc}$ in ML [MV/m]	Beam-on DF [%]
sp (nominal)	19.8	23.4	0.6
cw	7.8	7.3	100
lp	10	10	53
<u>lp</u>	14	15	23

At optimistic electron energy and emittance parameters one can expert to reach beyond 100keV

Saturation length and number of photons/femtosecond at saturation

60

Simplex vs Genesis

Good agreement

Ming Xie (SS) vs GENESIS

Peak saturation power simulated by GENESIS (() indicates quantum effect considered)

Mag. Period \ Ph. Energy	50keV	75keV	100keV
13mm	28 GW	17 GW	16 GW
	(8)	(7)	(7)
15mm	27 GW	18 GW	13 GW
	(15)	(11)	(10)
17mm	27 GW	18 GW	Before
	(18)	(12)	satu.
19mm	28 GW (21)	Before satu.?	Before satu.

Ming Xie (TT) vs SIMPLEX

: simulation point

Peak saturation power simulated by SIMPLEX (() indicates averaged power)

- 50	Mag. Period \ Ph. Energy	50keV	75keV	100keV
- 40	13mm	26 GW (11)	17 GW (8)	12 GW (4)
- 30	15mm	28 GW (11)	19 GW (8)	12 GW (5)
	17mm	28 GW (11)	26 GW (7)	14 GW (4)
- 20	19mm	28 GW (10)	24 GW (7)	11 GW (3)

Planar vs Helical undulator: 100keV, 17.5 GeV, 15mm period, QF included

 $K_{\rm rms} = 0.97$

~ 0.9

 $Z_{sat}^{hel} / Z_{sat}^{pl} \sim (A_{jj}^{pl} / A_{jj}^{hel})^{2/3}$

Comparison with harmonic lasing

European XFEL

Comparison with harmonic lasing

Comparison with harmonic lasing

Svitozar Serkez et al, EuXFEL, SPF, 06.12.2018

Phys. Rev. ST Accel. Beams 15, 080702 (2012)

The formulas (3)–(5) provide an accuracy better than 5% in the range of parameters

$$<\!\frac{2\pi\epsilon}{\lambda_h}<\!5,$$
 (6)

$$\delta < 2.5 \left\{ 1 - \exp\left[-\frac{1}{2} \left(\frac{2\pi\epsilon}{\lambda_h} \right)^2 \right] \right\}.$$
 (7)

In fact, the formulas (3)–(5) can also be used well beyond this range, but the above-mentioned accuracy is not guaranteed.

6	7
	•

he 2018 Lessons of Radiation Doses on Undulato		lators	Frederik Wo	27		
Cell#27, 9.3keV		Using rec Operation	cent User n weeks	Using 1nC and not 0.25n		
Dose (Gy)	Charge (C)	Bunches	Time (weeks)	Time (weeks)	Time (weeks)	
230	14.375	120	81	162-324	40.5-81	
500	31.21	120	176	352-704	88-176	
1000	62.42	120	352	704-1408	176-352	
230	14.375	500	19.4	38.8-77.6	9.7-19.4	
500	31.21	500	42.2	84.4-168.8	21.1-42.2	
1000	62.42	500	84.4	168.8-337.6	42.2-84.4	
230	14.375	1200	8.1	16.2-32.4	4.05-8.1	
500	31.21	1200	17.6	35.2-70.4	8.8-17.6	
1000	62.42	1200	35.2	70.4-140.8	17.6-35.2	
230	14.375	2700	3.6	7.2-14.4	1.8-3.6	
500	31.21	2700	7.8	15.6-30.2	3.9-7.8	
1000	62.42	2700	15.6	31.2-62.4	7.8-15.6	

SASE1/2 damage slides by Frederik Wolff-Fabris

European XFEL

68

SR heating handled with apertures

SPECTRA – Wiggler model

₩ SPECTRA 10.1 - D:\proj\Mid	-term XFEL upgrades\Super-X\Heat_issues_SR\Super-X_wig.prm	Laca Alacher 194	present Continues		
File Select Calculation Run	Jtility Configuration Help				
Accelerator Specification					
Linac					
Bunch Profile: Gaussian	▼	Injection C	ondition: Default		▼
Electron Energy (GeV)	17.5	Energy Sp	read 0.0000584		
Average Current (mA)	2.5e-07	βx (m)	30	αχ	0
Pulses/sec	1	βy (m)	30	αγ	0
σz (mm)	6	η _x (m)	0	nx'	0
Bunch Charge (nC)	0.25	nv (m)	0	nv'	0
Peak Current (A)	4.98333	$1/\gamma$ (mrad)	0.0291999		
Natural Emittance (m.rad)	9e-12	σx (mm)	0.01162	_{σx'} (mrad)	3.873e-04
Coupling Constant	1	σ у (mm)	0.01162	σy' (mrad)	3.873e-04
_{ɛx} (m.rad) 4.5e-12	εy (m.rad) 4.5e-12	γσχ'	0.01326	γσγ'	0.01326

Light Source Descripti	on		
Wiggler			
Link Gap & Field		σrx (mm) 0.01021	Grx' (mrad) 0.01772
Gap Value	20	σry (mm) 0.01003	σry' (mrad) 0.01742
B(T)	0.898905	∑ _X (mm) 0.01547	$\sum_{x'}$ (mrad) 0.01773
Periodic Length (cm)	1.5	Σ_{y} (mm) 0.01535	∑y' (mrad) 0.01743
Total Length (m)	2.0	Critical Energy (eV) 1830/4 Critical Mayelength (nm) 0.00677234	
Number of Periods	133	Total Power (kW) 7.80869e-08	
K Value	1.259		

SPECTRA – Wiggler model – far zone calculation

Spatial Dependence (Along Axi	s) - Power Density	
Observation		
Observation Point in Angle		Numerical Conditions
Distance from the Source (m)	30	Zero Emittance
$\Sigma_{px'}$ (mrad)	0.0276495	Accuracy Level 3
∑py' (mrad)	0.0206547	Output File Settings
Minimum _{θx} (mrad)	-0.07	Print Header
Maximum ⊕ _X (mrad)	0.07	Print Unit
Mesh x	101	Suffix (X Axis) dtx
Minimum _{θy} (mrad)	-0.07	Suffix (Y Axis) dty
Maximum _{θy} (mrad)	0.07	
Mesh y	101	Target Item Unit
Filtering Generic Filter	· · · · · · · · · · · · · · · · · · ·	Power Density kW/mrad^2

R=Theta_x*Distance from source
Source is in the MIDDLE of the ID

71

SPECTRA – Wiggler model – near zone calculation (2.2 m from source)

Near Field: Spatial Dependence	e (Along Axis) - Power Densit	y	_ 🗆 🗙			
Observation				1		
Observation Point in Angle		Numerical Conditions				
Distance from the Source (m)	2.2	Zero Emittance				
$\sum_{px'}$ (mrad)	0.0281467	Accuracy Level 3	×			
∑py' (mrad)	0.0213157	Output File Settings				
Minimum _{θx} (mrad)	-0.06	Print Header				
Maximum _{Əx} (mrad)	0.06	Print Unit				
Mesh x	51	Suffix (X Axis) dtx				
Minimum _{θy} (mrad)	-0.06	Suffix (Y Axis) dty				
Maximum _{θy} (mrad)	0.06					
Mesh y	51	Target Item Unit				
 R=Theta_x*Distand In kW/mm²→ (2.2) 	ce from source ?)^2=4.84 wrt previo	bus	■ PLOT: D:\proj\Mid-term > 7e-06 6e-06 5e-06 5e-06 2e-06 1e-06 0 0 0 0 0 0 0 0 0 0 0 0 0	(FEL upgrades\Super-X\Heat_issue	s_SR\Wig_spat_axis_2p2m_ne	ar Wig_ Wig_
Euro	opean XFEL		-0.0	6 -0.04 -0.02 tł	0 0.02 0. neta_x	04 0.06

European XFEL

SPECTRA – Wiggler model – near zone calculation (4 m from source)

Observations		Ity			
Observation Point in Ang	e	Numerical Conditions			
Distance from the Source (r $\Sigma_{PX'}$ (mrad)	n) 1.2 0.0292932	Zero Emittance Accuracy Level 3	×		
$\Sigma_{py'}$ (mrad) Minimum () (mrad)	0.0228083	Output File Settings			
Maximum Θ_X (mrad)	0.06	Print Header			
Mesh x	51	Suffix (X Axis) dtx			
Minimum θ_y (mrad)	-0.06	Suffix (Y Axis) dty			
Maximum ⊕ _y (mrad) Mesh y	51	Target Item Unit Power Density kW/mm^2			
R=Theta_x*Distanc In kW/mm^2→ (4)^2	e from source 2=16 wrt previous		1.6e-06– 1.2e-06– 20 0. 8e-07–		

Receipt

Since not too much difference after a couple of meters use the following model:

Undulator of variable length Lw

European XFEL

SPECTRA – Undulator model

SPECTRA 10.1 - D:\proj\Mid	-term XFEL upgrades\Super-X\Heat_issues_SR\Super-X_undu.prm					×
File Select Calculation Run U	Jtility Configuration Help					
Accelerator Specification						
Linac						
Bunch Profile: Gaussian		 Injection Co 	ondition: Default			•
Electron Energy (GeV)	17.5	Energy Spr	ead 0.0000584			
Average Current (mA)	2.5e-07	β _x (m)	30	αx	0	
Pulses/sec	1	β _V (m)	30	αν	0	
σz (mm)	6	nx (m)	0	'11x'	0	
Bunch Charge (nC)	0.25	ny (m)	0	nv'	0	
Peak Current (A)	4.98333	1/v (mrad)	0.0291999	.15		
Natural Emittance (m.rad)	9e-12	σx (mm)	0.01162	_{σx'} (mrad)	3.873e-04	
Coupling Constant	1	σy (mm)	0.01162	σy' (mrad)	3.873e-04	
εx (m.rad) 4.5e-12	εy (m.rad) 4.5e-12	γσχ'	0.01326	γσy'	0.01326	

Light Source Descripti	on		
Linear Undulator			
 Link Gap & Field Segmented Undulator Special Magnet Setup 			σr' (mrad) 1.763e-03 Σx' (mrad) 1.805e-03 Σy' (mrad) 1.805e-03
Gap Value	20	$\lambda_{1st}(nm)$ 0.012396	()
B(T)	0.978157	_{ɛ1st} (peak:eV) 100005	
Periodic Length (cm)	1.5	_{83rd} (peak:eV) 300008	
Total Length (m)	2.0	Flux _{1st} 1.72445e+06 Brilliopoetet 9.91211e+13	
Number of Periods	133	Peak Brilliance 1.97581e+24	
K Value	1.37	Bose Degeneracy 0.00156919	
ε1st(eV)	100020	Total Power (kW) 9.2463e-08	

SPECTRA – Undulator model – far-zone calculation

Spatial Dependence (Along A	xis) - Power Density		
Observation		Numerical Conditions	
Distance from the Source (m)	30	Zero Emittance	
$\Sigma_{px'}$ (mrad)	0.0287523	Accuracy Level 3	
$\Sigma_{py'}$ (mrad)	0.0206547	Output File Settings	
Minimum _{θx} (mrad)	-0.06	Print Header	
Maximum _{θx} (mrad)	0.06	Print Unit	
Mesh x	51	Suffix (X Axis) dtx	
Minimum Θ_y (mrad)	-0.06	SL 💷 PLOT: D:\proj\Mid-term XFEL upgrades\Super-X\Heat_issues_SR\Undu_spat_axis_30m_far	
Maximum θ_y (mrad)	0.06		
Mesh y	51		
Filtering Generic Filter	•		Undu_
			Undu_
		2.8e-05	
		<u></u> _2 ^{2.1e-05}	
		7e-06-	_
		0-	-
		-0.06 -0.04 -0.02 0 0.02 0.04 0.0)6
		theta_x	-
Therefore:

No big difference between undulator and wiggler model

- Far zone starts to be ok for a distance a few time the ID length
- Use wiggler model, far zone
- Assume e.g. 5m from the exit of a wiggler of variable length
- Study as a function of the wiggler length

Undulator of variable length Lw

Observation position fixed at 5 m from the exit

Selecting 1 period just divides the full flux by #periods

le Select Calculation Ru Accelerator Specificatio	ın Utility Configuration Help n									78
Bunch Profile: Gaussian					Injection Condition: Default					
Electron Energy (GeV) Average Current (mA) Pulses/sec oz (mm) Bunch Charge (nC) Peak Current (A) Natural Emittance (m.r. Coupling Constant _{Ex} (m.rad) 4.5e-12	17.5 2.5e-07 1 6 0.25 4.98333 J) 9e-12 1 εy (m.rad) 4.5e-12			Energy Sp $\beta x (m)$ $\beta y (m)$ $\eta x (m)$ $\eta y (m)$ $1/\gamma (mrad)$ $\sigma x (mm)$ $\sigma y (mm)$ $\gamma \sigma x'$	read 0.0000584 30 30 0 0 0.0291999 0.01162 0.01162 0.01326	αχ αγ ηχ' ηγ' σχ' (n σγ' (n γσγ'		0 0 0 3.873e-04 3.873e-04 0.01326		
ight Source Description Wiggler Link Gap & Field Gap Value B(T) Periodic Length (cm) Total Length (m) Number of Periods 1 K Value	n 20 0.898905 1.5 0.0 15	Spatial Dependence (Mesh: x-y) - Power	σrx (mm) σry (mm) Density	1.415e-04 8.153e-05		σrx' (mrad σry' (mrad) 0.01772) 0.01742		X
		Observation Point in Angle			Numerical Conditions					
	1.259	Distance from the Source (m) $\sum_{px'}$ (mrad) $\sum_{py'}$ (mrad) Minimum Q (mrad)	n) 5 0.0277442 0.0207814 -0.06 0.06			Zero Emittance Accuracy Level 3 Output File Settings			•	
					 Print Header Print Unit 					
		Maximum Θ_X (mrad)								
		Mesh x	101	101		Suffix dta				
		Minimum θ_y (mrad) -0		.06		Target Itom				
		Maximum _{θy} (mrad)	0.06	0.06		Power Density kW/mrad^2				
		Mesh y 101		•						
		Filtering Generic Filter								
	European XF									

79

Example after about 907 periods (see Analysis.nb)

Harmonic Lasing Basic Fitting Formulas

European XFEL

Harmonic Lasing Basic Fitting Formulas

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 15, 080702 (2012)

Harmonic lasing in x-ray free electron lasers

E. A. Schneidmiller^{*} and M. V. Yurkov

Harmonic Lasing vs. SCU

Target Wavelength

 $\lambda_t = \lambda_h$ fixed

 γ fixed

 λ_w variable

K (rms) variable

Therefore

 $\lambda_{wh}(1+K_h^2)=\lambda_{wSC}(1+K_{SC}^2)$

Index "h" \rightarrow Harmonic lasing Index "SC" \rightarrow Superconducting Undulator

 $\lambda_t = \lambda_w \frac{1 + K^2}{2\nu^2}$

 $\lambda_w(1+K^2) = \text{constant}$

Note the difference with the "retuning" case, where the period is fixed too (see PRSTAB 15, 080702 Appendix A)

Harmonic Lasing vs. SCU

$$\begin{split} \lambda_{wh}(1+K_{h}^{2}) &= \lambda_{wsc}(1+K_{SC}^{2}) \\ L_{g0SC} &= 1.67 \left(\frac{I_{A}}{I}\right)^{1/2} \frac{(\epsilon_{n}\lambda_{wSC})^{5/6}}{\lambda_{t}^{2/3}} \frac{(1+K_{SC}^{2})^{1/3}}{KA_{JJSC}} \\ L_{g0h} &= 1.67 \left(\frac{I_{A}}{I}\right)^{1/2} \frac{(\epsilon_{n}\lambda_{wh})^{5/6}}{\lambda_{t}^{2/3}} \frac{(1+K_{h}^{2})^{1/3}}{h^{5/6}KA_{JJh}} \end{split}$$

84

Super-X: Simulations for super-hard X-ray generation with short period undulators for the EuXFEL

Harmonic Lasing vs. SCU

Get the K for SC and HL case

Use the above expressions with

$$\begin{aligned} \mathbf{Ksc} &= \frac{\sqrt{2 \gamma^2 \lambda \text{target} - \lambda \text{usc}}}{\sqrt{\lambda \text{usc}}} ; \quad \mathbf{Kh} = \frac{\sqrt{2 h \gamma^2 \lambda \text{target} - \lambda \text{uh}}}{\sqrt{\lambda \text{uh}}} ; \\ \frac{L_{g0h}}{L_{g0SC}} &= \frac{\lambda_{wh}^{1/2} K_{SC} A_{JJSC}}{h^{5/6} K_h A_{JJh} \lambda_{wSC}^{1/2}} \end{aligned}$$

$$\begin{aligned} & \operatorname{FullSimplify}\left[h^{-5/6} \frac{\lambda uh^{1/2} \operatorname{Ksc}}{\lambda usc^{1/2} \operatorname{Kh}} - \frac{(\operatorname{BesselJ}\left[0, \operatorname{Ksc}^{2} / (2 + 2 \operatorname{Ksc}^{2})\right] - \operatorname{BesselJ}\left[1, \operatorname{Ksc}^{2} / (2 + 2 \operatorname{Ksc}^{2})\right])}{(\operatorname{BesselJ}\left[(h-1) / 2, \operatorname{h} \operatorname{Kh}^{2} / (2 + 2 \operatorname{Kh}^{2})\right] - \operatorname{BesselJ}\left[(h+1) / 2, \operatorname{h} \operatorname{Kh}^{2} / (2 + 2 \operatorname{Kh}^{2})\right])}\right] \\ & - \frac{\lambda uh \sqrt{2 \gamma^{2} \lambda target - \lambda usc}}{(2 \gamma^{2} \lambda target - \lambda usc} \left(\operatorname{BesselJ}\left[0, \frac{1}{2} - \frac{\lambda usc}{4\gamma^{2} \lambda target}\right] - \operatorname{BesselJ}\left[1, \frac{1}{2} - \frac{\lambda usc}{4\gamma^{2} \lambda target}\right]\right)}{n^{5/6} \sqrt{2 h \gamma^{2} \lambda target - \lambda uh} \lambda usc} \left(\operatorname{BesselJ}\left[\frac{1}{2} (-1 + h), \frac{h}{2} - \frac{\lambda uh}{4\gamma^{2} \lambda target}\right] - \operatorname{BesselJ}\left[\frac{1 + h}{2}, \frac{h}{2} - \frac{\lambda uh}{4\gamma^{2} \lambda target}\right]\right)} \right] \\ & \operatorname{Set} \text{ the gain length ratio} \end{aligned}$$

$$\begin{aligned} & \operatorname{LOHdivLOSC}[h_{-}, \lambda target_{-}, \lambda uh_{-}, \lambda usc_{-}] = \\ & \lambda uh \sqrt{2 \gamma^{2} \lambda target - \lambda usc} \left(\operatorname{BesselJ}\left[0, \frac{1}{2} - \frac{\lambda usc}{4\gamma^{2} \lambda target}\right] - \operatorname{BesselJ}\left[1, \frac{1}{2} - \frac{\lambda usc}{4\gamma^{2} \lambda target}\right]\right) \\ & \operatorname{h}^{5/6} \sqrt{2 h \gamma^{2} \lambda target - \lambda uh} \lambda usc \left(\operatorname{BesselJ}\left[0, \frac{1}{2} - \frac{\lambda usc}{4\gamma^{2} \lambda target}\right] - \operatorname{BesselJ}\left[1, \frac{1}{2} - \frac{\lambda usc}{4\gamma^{2} \lambda target}\right]\right) \end{aligned}$$

2

European XFEL

Super-X: Simulations for super-hard X-ray generation with short period undulators for the EuXFEL

Svitozar Serkez et al, EuXFEL, SPF, 06.12.2018

Harmonic Lasing vs. SCU

So we indicated with LOHdivLOSC[h_, Atarget_, Auh_, Ausc] the ratio

Now set

 λ target = 0.0155 * 10⁻⁹ γ = 17500 / 0.511 h = 3

Harmonic Lasing vs. SCU

Energy-spread modifications make the situation much worse for HL

$$L_g \simeq L_{g0}(1+\delta) \qquad \delta = 131 \frac{I_A}{I} \frac{\epsilon_n^{5/4}}{\lambda_h^{1/8} \lambda_w^{9/8}} \frac{h^{9/8} \sigma_\gamma^2}{(KA_{JJh})^2 (1+K^2)^{1/8}}$$

 $\ln[1]:=\,\delta\,[\,\epsilon_{-}\,,\,\lambda u_{-}\,,\,h_{-}\,,\,\sigma\gamma_{-}\,,\,Ku_{-}\,,\,AJJh_{-}\,]\,=\,$

 $131 + IA / Ip + \epsilon n^{(5/4)} / (\lambda target^{(1/8)} + \lambda uh^{(9/8)}) h^{(9/8)} \sigma_{\gamma}^2 / ((Ku AJJh)^2 (1 + Ku^2)^{(1/8)})$

Out[1]=
$$\frac{131 \ h^{9/8} \ IA \ en^{5/4} \ \sigma\gamma^2}{AJJh^2 \ Ip \ Ku^2 \ (1 + Ku^2)^{1/8} \ \lambda target^{1/8} \ \lambda uh^{9/8}}$$

 $\gamma = 17500/0.511$ $\lambda target = 0.0155 \pm 10^{-9}$ $\epsilon n = 0.3 \pm 10^{4} (-6)$

IA = 17000; Ip = 5000; h = 3;
$$\sigma_{Y}$$
 = 2.; Ku = $\frac{\sqrt{2 h \gamma^{2} \lambda target - \lambda uh}}{\sqrt{\lambda uh}}$;

 $AJJh = BesselJ[(h-1)/2, hKu^2/(2+2Ku^2)] - BesselJ[(h+1)/2, hKu^2/(2+2Ku^2)];$

Harmonic Lasing vs. SCU

Energy-spread modifications make the situation much worse for HL

 $\ln[10] = h = 3$

Out[10]= 3

 $\ln[11] = Plot[\delta[en, \lambda uh, h, \sigma_{\chi}, Ku, AJJh], \{\lambda uh, 0.015, 0.068\}]$

Harmonic Lasing vs. SCU

Energy-spread modifications make the situation much worse for HL

 $\ln[12] = h = 5$

Out[12]= 5

 $\ln[13] = Plot[\delta[en, \lambda uh, h, \sigma_{\gamma}, Ku, AJJh], \{\lambda uh, 0.015, 0.068\}]$

Harmonic Lasing vs. SCU

European XFEL

Energy-spread modifications make the situation much worse for HL

 $\ln[15] = h = 1$

Out[15]= 1

 $\ln[16] = Plot[\delta[en, \lambda uh, h, \sigma_{\chi}, Ku, AJJh], \{\lambda uh, 0.015, 0.02\}]$

Harmonic Lasing Seeding vs. SCU

HLSS \rightarrow Use part (A) of the undulator tuned directly at λ_t , part (B) tuned at a sub-harmonic Conceptually the same as pSASE

Two different undulator periods are used for the two undulator parts

Then assume part (A) is the same as in the SCU case And Part (B) is like in the harmonic lasing case

Assume a fraction 0<f<1 of the total length is (A) tuned directly at λ_t as SCU

The total gain length can be then written (assuming perfect suppression of the sub-harmonic fundamental in (B) as

 $L_g = fL_{gSC} + (1 - f)L_{gh} > L_{gSC}$ for $L_{gh} > L_{gSC}$ Usually part (A) is shorter than (B), so f < 0.5 tipically

Conclusions

Harmonic Lasing

Unless a short-period undulator is used, gain length is longer than for an optimized SCU

Example:

Case 40mm vs. SCU with 15mm:

$$L_{g0h} = 1.55 L_{g0SC}$$

Energy spread (1MeV rms)

$$\begin{array}{ll} L_{gSC}\simeq L_{g0SC}\\ h=3: & L_{gh}\simeq 1.18L_{g0h} \longrightarrow L_{gh}\simeq 1.83L_{gSC}\\ h=5: & L_{gh}\simeq 1.32L_{g0h} \longrightarrow L_{gh}\simeq 2L_{gSC} \end{array}$$

HLSS

Is also longer as $L_g = fL_{gSC} + (1 - f)L_{gh} > L_{gSC}$ for $L_{gh} > L_{gSC}$ a small part

Important notes:

- → All this assuming perfect suppression of the fundamental in HL (or HLSS), worse in reality
- \rightarrow The extra "budget" due to SCU can be used e.g. for tapering
- → Moreover: HL or HLSS are better with short periods. And SCUs produce large magnetic field

So they are best for tuning at sub-harmonic of the fundamental. One could install SCUs as baseline and still employ HL and HLSS to increase the spectral brightness, this time with a better gain length (energy spread effect still there, but short period)

European XFEL