
1 
J. Rossbach,  Workshop on shaping the future of the European XFEL 

European XFELO:  
An Oscillator FEL for hard Xrays 

J. Rossbach, Universität Hamburg 

 
Workshop on shaping the future of the European XFEL: 

options for the SASE 4/5 tunnels,  Dec. 7, 2018 

 

Presentation 
dedicated to  
Bjørn H. Wiik 

 



2 
J. Rossbach,  Workshop on shaping the future of the European XFEL 

courtesy R. Bakker 

FEL oscillator:  proposed 1972 by J.M.J. Madey  
  first experimental proof at Stanford 1976 (λ ≈ 3μm) 

Historic background 

Main bottleneck:  rather small gain per passage  

    needs many round trips of radiation within optical cavity 
   & synchronized electron bunches  limited to optical wavelengths 

Way out ①:  High gain, single pass FEL (invented by Kondratenko & Saldin 1979)  

    needs kA currents + very long undulator !   

Way out ②:  Make mirrors from Bragg crystals (proposed by Kim, Shvyd’ko, Reiche 2008)  



XFELO benefits 

• Fully coherent X-ray pulses with high spectral purity  
Δ𝜆

𝜆
≈ 10−6 . 

• Excellent stability of pulse energy and spectrum. 

• Rather compact/inexpensive set-up (15m undul.). 

• Useful as narrow b.w. seeding source for HGHG. 

• Rather tolerant on electron beam momentum width   
   May use spent SASE beam. 

• Novel techniques can be developed for novel sciences. 

• First step for Xray spectral comb (12 neV, Adams & Kim, PRSTAB 2015) 
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XFELO efforts at Universität Hamburg  
2009: JR:   Idea to adopt original XFELO (based on cw ERL)  
   for European XFEL  parameters 
2009 – 
2013: J. Zemella:   PhD thesis on conceptual XFELO design @ EuXFEL 
   -- is gain sufficient to reach saturation within few 100 round trips? 

   -- first simulations of gain until saturation 
   -- identified major challenges: thermal load on Bragg crystals  

    
2012 – 
2018: Chr. Maag:   PhD thesis on experimental set-up to test thermal  
 load issues of Bragg crystals under XFELO conditions 

2017 – 
now: I. Bahns:  PhD thesis on experimental investigations of Bragg 
 crystals (ultrasonics, crystal holder, thermal diffusion, …)  

          P. Thießen:   PhD thesis on full scale start-to-end simulation  
 &  XFELO implementation at EuXFEL  
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XFELO basics 

Tunable scheme:   

• Bragg angle variable  tunability (≈10-3) 
•  determined by transverse space 

Mechanics even more challenging 
• Scientific benefit ??  
  

Basic scheme :  

• Bragg angle fixed for one single wavelength 
• X-rays focused by grazing incidence mirrors   

𝑛 ∙ 𝜆 = 2𝑑 ∙ sin 𝜃𝐵 

Bragg condition: 

wavelength Bragg 
 angle distance between 

atomic planes 
 depends on temperature!! 



J. Zemella PhD thesis 2010: 
 First simulation of X-ray FEL Oscillator (XFELO)  
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• From Startup SASE 
Epulse=1nJ (Δω/ω10-3) to 
fully coherent FEL 
radiation  Epulse=1mJ 
saturation (Δω/ω10-6) 

• Saturation case: 
Bandwidth Darwin width, 
reflectivity >99%, 
absorptivity <1%  
Brilliance 1035 

• Interaction X-ray--material 
 displacement/strain in 
the material 
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XFELO issues  

  What do we need to know? 
 
• What happens during pile-up of heating during bunch train?   
• Change of Bragg reflectivity after impact of FEL radiation pulse ? 
• How does this vary from start-up with SASE to Bragg-filtered 

radiation pulses? 



Pile-up of heating 

• Problem:  (classical) Fourier heat 
law fails, because mean free path 
of phonons ≈ thickness of crystal 

• Correction of Fourier Law may 
work  further theoretical and 
experimental work necessary 

• Solving Boltzmann Heat equation 
 good approach, but 
challenging task   
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T0=75K 
EAbs=5µJ 
σr=86µm 
d=100µm 
 
 

T0=300K 
EAbs=1.8µJ 
σr=171µm 
d=100µm 

Much better: Cryogenic cooling: 
Less heat capacity, but MUCH better 

thermal conductivity 
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Poor thermal conductivity  
Change of the crystal lattice due 
to thermal expansion 
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Pile-up of heating 

P. Thiessen:   1D2D in simulation, improve heat conductivity model 
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Cavity fill-up 

Maybe still too simple model? 
 Check by measurement !  
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XFELO relevant measurements - elsewhere  

S. Stoupin et. al, Phys. Rev. B 86, (2015) 

Important measurement at ANL:  
Reflectivity of spontaneous undulator radiation from nitrogen-doped diamond after 
excitation with laser pulse λ=400nm tp=100ps  

strain at surface:         theo.        measure 

• Room temperature 
• Spontaneous radiation  large depth of penetration (Labs >> dcrystal) 
• Broad spot on crystal  1 D problem 
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XFELO relevant measurements @ Univ. HH  

What we can measure is the change of optical reflectivity of the surface.  
If this changes, it is plausible that it is due to change of temperature.  
 
BUT:  By how much does the temperature change in fact? 
 And by how much do the Bragg properties change?  



Experimental Setup for Thermoreflectivity (Maag Diss. 2018) 
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Pump UV Laser Ep=1µJ; tp=1ns;         
penetration depth = 3µm 

Pump laser  temporal change refractive 
index  Temporal change in reflectivity  
heat propagation 
Refl. change ↔ Temp. change:  assumed to be 
linear  

Measurement at 297K 
Raw Data 

Long term signal fit: 

Measurement at 150K 
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Thermoreflectivity of Bragg crystals: 

Failure of classical heat conductivity 
(Fourier model) at T <220K 
Mfp length of phonons comparable with 
crystal dimensions  

Hyperbolic heat equation suitable for 
modeling the 1D heat conduction at 
T>100K  
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What else will happen? 
Vibration!  Thermoelastic strain waves  

due to dynamic thermal expansion and radiation pressure 

Low damping rate of ultrasonic in single crystalline diamond ! 
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for Bragg reflection ≈ 100 nrad ! 

 Ultrasonics will induce local 
density changes inside crystal 

 



I. Bahns: 2D simulation of ultrasonic propagation 
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first 5ns after absorption of 1 µJ X-ray pulse 
150µm thick diamond crystal (444)  
penetration depth=20µm 
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Not yet implemented in XFELO S2E simulation  



I. Bahns : generate ultrasonic wave by pump laser pulse and 
measure displacement on back side of crystal by interferometry  
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Lcopper 
Ldiamond Lindium 

Topview 

Matched geometry/material expansion for low 
strain at low temperature  
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Heat transfer 
coefficient: 
h=q/ΔT  
thermal contact 
 

q 

Experimental Setup for Sample Holder 

Cryogenic 
cooler 
50K 



Attention:  
What we did so far is nice theory,  

or we mimic the XFEL pulse by a pump laser pulse.  
 We need a critical experiment :  

HXRSS-setup for first XFELO-experiments 

for analysis 

• First experiments  with not-matched pass-to-pass will test reflectivity of circulating x-ray pulse. 

 Minimum results: testing alignment  

 Better:Testing diffraction calculations by probing intensity of reflected waves 

 Best: Probing the diffraction altered by the heating of the crystal 
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Conclusion & Outlook  

Present team:  

1. XFEL oscillator would turn the EuXFEL into a REAL laser 
2. Main issue: X-ray radiation load on Bragg crystal 
3. Rather advanced understanding of physics and S2E modelling 
4. Pump-probe lab for ns-scale investigation of thermal load and 

ultrasonics – first results 
5. Critical experiment at Self-Seeding set-up will validate models    

I. Bahns, W. Decking, W. Hillert, 
J. Rossbach, H. Sinn, P. Thiessen 

Next: 
1. Investigate outcoupling issue 
2. Investigate crystal holder options & mechanical tolerances 
3. Consolidate S2E simulation tools --- what determines saturation?  
4. Work out proposal, including X-ray seeding and spent beam option 
NOW it‘s not too early and (hopefully) not too late to be the first  ! 



Different FEL generations 
already visible 

Different FELs have 

complementary characteristics 

and applications !  
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FLASH & EuXFEL  

XFELO  


