

Scaled Momentum Spectra in the Target Region of the Breit Frame

Status Report

Nick Brook, Corinna Catterall, Lydia Shcheglova

scaling violation in the target region ?

- fit of the shape of the $ln(1/x_p)$ distribut to study X,Q^2 dependence of the peak position
 - FF study needs data analysis over a wide range of Q² and X.

- more rapid increasing of the maxima of $ln(1/x_p)$ distributions in the target region compared to those in the current region

 $ln(1/x_p)$

$$X_p = \frac{p^{Breit}}{p_{max}}$$

A(%) =
$$\frac{\text{No. of events satisfying kinematic cuts}}{\text{No. of events generated in that bin}}$$

Track acceptances

Track Acceptances

Track Purity

Thesis

Figure 6.12: The purity in the measurement of $\ln\left(\frac{1}{x_p}\right)$ in the analysis (x,Q^2) bins.

Figure 6.13: The efficiency in the measurement of $\ln\left(\frac{1}{x_p}\right)$ in the analysis (x,Q^2) bins.

 Q^2 (GeV 2)

Figure 6.9: The resolution in the measurement of $\ln \left(\frac{1}{x_p}\right)$.