Report on Tracking Efficiency

Pisa, 2 November 2018

L.Zani

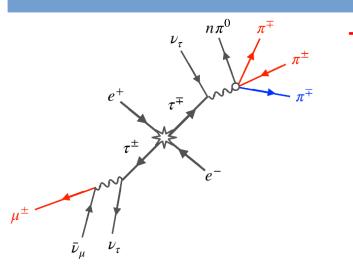
Istituto Nazionale di Fisica Nucleare

Outline

- Reminder about Tracking efficiency strategy
- Efficiency estimator Vs. efficiency
- Summary

Measurement Strategy

Strategy: exploit charge conservation and kinematic constrains on simple (= with a well recognizable topology) τ -pairs events to deduce the existence of a track.


Reference: "*Track finding efficiency in BaBar*" https://arxiv.org/abs/1207.2849

BaBar strategy was based on *Tau31 events selection*:

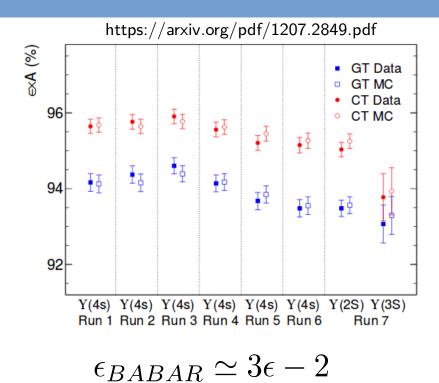
- Tracking efficiency, including the detector acceptance, is computed as:
 - $\epsilon xA = N4/(N3+N4)$
 - * N4 = Tau31 events where the 4^{th} track has been found
 - N3 = Tau31 as reconstructed in the 1+2 selection (further details in the next slide) where the 4th is not found.
- MC-data difference in tracking efficiency is then given by:
 - $\Delta = 1\text{-}~\epsilon_{_{MC}}/\epsilon_{_{data}}$
 - With ϵ the tracking efficiency evaluated respectively on MC/data, including the detector acceptance A.

L.Zani – Tracking Meeting 2018.11.02

Measurement Strategy: problem with ExA definition

Tag & probe method:

- select events reconstructing one isolated track (consistent with a muon/electron hypothesis → tag side) + two "good" tracks on the hadronic side (probe side)
- Charge conservation implies the 4th track:
 - FOUND \rightarrow N4 ++
 - NOT FOUND \rightarrow N3 ++
 - Compute N4/(N3+N4) = ϵxA


Let's call ε the efficiency to find a track and assume we always have one track on the tag side:

- $N4 = \varepsilon^3 N BR$ (all 3 tracks on the probe side reconstructed)
- $N3 = 3 \epsilon^2 (1-\epsilon) N BR$ (only 2 out of 3 probe tracks reconstructed \rightarrow binomial variable)

L.Zani – Tracking Meeting 2018.11.02

Measurement Strategy: problem with ExA definition

(||)



$$\epsilon_{xA} = N4/(N3+N4) = \epsilon_{BABAR}$$

$$\epsilon_{BABAR} = \frac{\epsilon^3}{\epsilon^3 + 3\epsilon^2(1-\epsilon)} = \frac{\epsilon}{3-2\epsilon} = \frac{1-\delta}{1+2\delta} \simeq 1 - 3\delta + o(\delta^2)$$

With δ the probability to loose one track: inefficiency = 1- ϵ , and ϵ the real track finding efficiency.

Measurement Strategy: problem with ε×A definition (III)

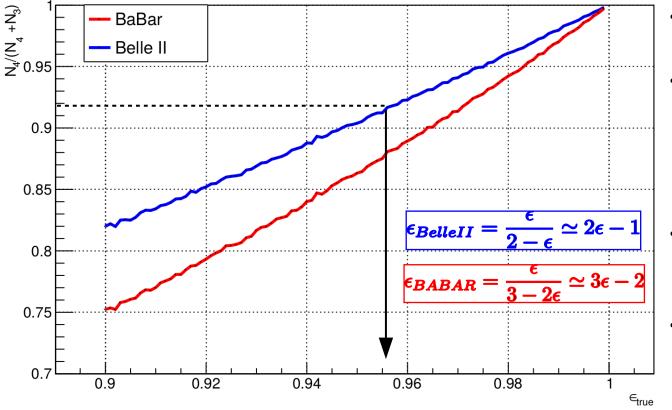
$$\epsilon_{BABAR} \simeq 3\epsilon - 2$$

 $\epsilon_{BelleII} \simeq 2\epsilon - 1$

$$\epsilon_{xA} = N4/(N3+N4) = \epsilon_{BABAF}$$

$$\epsilon_{BABAR} = \frac{\epsilon^3}{\epsilon^3 + 3\epsilon^2(1-\epsilon)} = \frac{\epsilon}{3-2\epsilon} = \frac{1-\delta}{1+2\delta} \simeq 1 - 3\delta + o(\delta^2)$$

With δ the probability to loose one track: inefficiency = 1- ϵ , and ϵ the real track finding efficiency.


For the Belle II case:

- currently we reconstruct only the "opposite" sign case, so $N3 = 2^{\epsilon^2}$ (1- ϵ)N BR (2 remaining tracks with *same sign* out of the 3 \rightarrow event not reconstructed)

$$\epsilon_{BelleII} = \frac{\epsilon^3}{\epsilon^3 + 2\epsilon^2(1-\epsilon)} = \frac{\epsilon}{2-\epsilon} = \frac{1-\delta}{1+\delta} \simeq 1 - 2\delta + o(\delta^2)$$

L.Zani – Tracking Meeting 2018.11.02

Toy MC: N4/(N3+N4) Vs ϵ

- 100k events generated for each points in the range 0.9 $<\epsilon_{_{true}}<\!\!1\!,$ step size=0.001
- Each of the 3 prongs(probe side) is a random variable uniformly distributed in [0,1] and if ...

$$... < ~ \epsilon_{_{true}} \rightarrow detected$$

$$... > \ \epsilon_{_{true}} \rightarrow undetected$$

- Define N3 and N4 favorable cases and compute the estimator N4/(N3+N4) for each given ϵ_{true}
- Measured efficiency around ~ 92% should correspond to ~ 95.5% real finding efficiency per track

L.Zani – Tracking Meeting 2018.11.02

Summary

- N4/(N3+N4) underestimates the real efficiency
- The discrepancy between data and MC is also affected and should be corrected
- Investigate corrections (if) applied by BaBar