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The Most Important Math Equation in Human History 
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The Most Important Math Equation in Human History 
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𝑦 = 𝐴𝑥



❑~2nd century: First appearance 
in an antient Chinese book: 
“The Nine Chapters on the 
Mathematical Art (九章算术)”

❑16 -18th century: Systematically 
studied by many famous 
European mathematicians: 
Descartes, Leibniz, Cramer, 
Gauss, Grassmann, … 

❑Now: modern applications 
everywhere
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𝑦 = 𝐴𝑥
❑Many problems can be reduced 

to System of Linear Equations

▪ or its variant forms

❑80% of the work is to figure out 

how to write out the equations:

▪ y: the measurements

▪ x: the unknowns

▪ A: the connection between y and x. 

The Most Important Math Equation in Human History 



A Classical Application: Digital Signal Processing

❑Fundamental theory of linear 
time-invariant (LTI) system: 
▪ Any LTI system can be 

characterized entirely by a single 
function called the system's 
impulse response
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𝑦 = 𝐴𝑥
▪ y: measured discrete-time signal

▪ x: the (unknown) true signal

▪ A:??

ℎ(𝑡)x(𝑡) y 𝑡 = ℎ 𝑡 ∗ 𝑥 𝑡

= න
−∞

∞

ℎ 𝑡 − 𝜏 𝑥 𝜏 𝑑𝜏



Impulse response
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Room 

acoustic 

response 

LArTPC 

field + electronic 

response 

Image credit: www.prosoundweb.com
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2D Impulse response
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ℎ(𝑥, 𝑦)

Camera 

optical 

response

LArTPC 2D response:

y: t * drift velocity 

x: wire number * pitch 

Hubble telescope impulse response (Image credit: http://web.mit.edu)
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Change of Basis

❑Discrete Fourier Transform;
▪ Convolution -> multiplication: matrix diagonalization

▪ FFT algorithm: 𝑂 𝑁2 → 𝑂(𝑁 log𝑁) : fast computation

▪ Frequency-domain filters: reduce noise, regularize fluctuations 
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ℎ(𝑡, 𝑤)x(𝑡, 𝑤) y 𝑡, 𝑤 = ℎ 𝑡, 𝑤 ∗ 𝑥 𝑡, 𝑤

𝐻(𝑓, 𝑠)𝑋(𝑓, 𝑠) Y 𝑓, 𝑠 = 𝐻 𝑓, 𝑠 ⋅ 𝑋 𝑓, 𝑠

DFTDFTIDFT.

Time 

Domain 

Frequency 

Domain 

⋯
⋮ ⋱ ⋮

⋯

𝜆1
⋱

𝜆𝑛



Three Types of Linear Problems

❑Physicists desire an overdetermined system: reduce systematics

❑Reality (technology / economics constraints): experiments with 

underdetermined systems are still very common
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𝑦 = 𝐴𝑥

dim 𝑦 = dim(𝑥)

dim 𝑦 > dim(𝑥)

dim 𝑦 < dim(𝑥)

One-to-one transformation

Convolution, DFT

Over-determined

N(measurement) >> N(unknown) 

Under-determined

N(measurement) << N(unknowns)  

exact 

solutions

optimized 

solutions



Overdetermined linear system with uncertainties
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𝑦 = 𝐴𝑥 𝜒2 =
𝑦 − 𝐴𝑥

𝜎

2

dim 𝑦 > dim(𝑥)

𝜒2 = 𝑦 − 𝐴𝑥 𝑇 ⋅ 𝑉−1 ⋅ (𝑦 − 𝐴𝑥)

𝑥 = 𝐴𝑇𝑉−1𝐴 −1𝐴𝑇𝑉−1 ⋅ 𝑦

weighted least square

More general: 

Solution: 

(maximum likelihood)

❑ Usage: parameter optimization (aka. fitting). See Xin’s next talk for examples

❑ Main challenge: fast computation when dimension is large

minimize



Underdetermined system: TPC 3D image reconstruction

❑Pad-readout TPC: one-to-one / over-determined system

▪ A 3-D image (2D pixels + time) can be directly obtained without ambiguity. 

❑Wire-readout TPC: under-determined system

▪ Large LArTPCs typically use wire readout due to the cost and power 

consumption constraints.

▪ Limited number of wire planes (typically 3): information loss (n2 - > 3n)

▪ Difficulty is topology dependent

• worst case: isochronous event where electrons arrive at the wire planes at the same time.
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same wires are hit, which 

topology is the true event?



LArTPC vs X-ray Tomography

❑CAT Scan
▪ Detector (x-ray generator/receiver) 

moves across the object (body)

▪ Axial projections (~180) by detector 
rotation 

▪ Cross section can be reconstructed at 
each position along detector movement
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❑LArTPC

▪ Objects (ionizing electrons) move 

across detectors (wire planes)

▪ Axial projections (~3) by wire orientation

▪ Cross section can be reconstructed at 

each time slice along electron drift



Construct Linear Equations
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𝑦 = 𝐴𝑥 Use two planes as an illustration

y: measured charge signal on each wire

x: the (unknown) true charge deposition in 

each possible cell

A: bi-adjacency matrix connecting wires and 

cells (determined solely by wire geometry)  

A
t o

n
e
 tim

e
 s

lic
e

𝑥 =

𝐻1
0
0
0
𝐻5
𝐻6

Desired 

Solution



Solve underdetermined linear problem: regularization

❑Previous example has 6 

unknowns, 5 equations: 

under-determined system 

❑Adding constraints: find the 

sparsest solution (applies to most 

physics events): L0-regularization
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minimize 𝑥 0 , subject to: 𝑦 = 𝐴𝑥

❑ Remove unknowns until 

equations can be solved, then 

find the best solution with the 

minimum 𝜒2

❑ a combinatorial problem

o 2 out of 6: 15 combinations

o 10 out of 40: 0.8 billion 

combinations

𝑥 = 𝐴𝑇𝑉−1𝐴 −1𝐴𝑇𝑉−1 ⋅ 𝑦

non-invertible, 2 zero-eigenvalues out of 6. 

(L0-norm: number non-zero elements) 

NP-hard!

Procedure



Compressed Sensing (L1-regularization)

❑Breakthrough: 
mathematical proof that L0 
problem can be well 
approximated by the L1 
problem (Compressed 
Sensing, Candes, 
Romberg, and Tao, 2005.)
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minimize 𝑥 1 , subject to: 𝑦 = 𝐴𝑥

https://arxiv.org/abs/math/0503066

Tomography: reconstruct image with far less projections

𝜒2 = 𝑦 − 𝐴𝑥 𝑇 ⋅ 𝑉−1 ⋅ 𝑦 − 𝐴𝑥 + 𝜆 𝑥
1

Or, equivalently, minimize

(L1-norm: sum of absolute values of the elements) 

https://arxiv.org/abs/math/0503066


L1 Regularization

❑Brief History of L1 regularization

▪ Wavelet soft thresholding (Donoho and 

Johnstone 1994)

▪ Lasso regression (Tibshirani 1995)

▪ Same idea in Basis Pursuit (Chen, 

Donoho and Saunders)

▪ Extended to many linear-model 

settings, e.g. Survival models 

(Tibshirani, 1997)

▪ Gives to a new field Compressed 

Sensing (Candes, Romberg, Tao, 

2005): near exact recovery of sparse 

signals in very high dimensions
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❑Features of L1 regularization 

▪ Convex problem

• local minimum == global minimum

▪ Fast minimization

• efficient algorithms to quickly find the 

global minimum e.g. coordinate descent

▪ Shrink the irrelevant variables to 

exactly zero leading to the desired 

sparse solution, due to the specific 

shape of the χ2 function

• compared with L2 regularization (RIDGE), 

which also shrinks the variables, but only 

to small non-zero values



Performance in Wire-Cell

❑Typically ~tens of seconds to 
reconstruct the whole 3D image 
(originally a few hours)
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Geometry only

Charge Eqn + L1

Truth

Truth no L1 L1

JINST 13, P05032 (2018)



Practical Lessons from MicroBooNE

❑Expectation (from LArTPC 
principle): same charge 
measured three times by 
each wire plane
▪ Reality: takes two years to 

improve signal processing to 
achieve charge matching 
among different planes

❑Expectation: 3 wire 
measurements everywhere
▪ Reality: non-functional channels 

cause in some regions only 2 or 
even 1 wire-plane measurement 
available → lots of noises and 
ghost tracks
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The devil is in the detail



More on Compressed Sensing

Advanced L1 regularization
❑Many ways to extend the simplest L1 

regularization, by adding additional 
known constraints in the 𝜒2 =
𝑦 − 𝐴𝑥 2 + 𝜆 𝑥 1

▪ Grouped Lasso: add penalty based on group

▪ Fused Lasso: add penalty based on 
connectivity

▪ Other customized penalty terms in the χ2 
definition

▪ Or even generalize to non-linear case:
𝜒2 = −2 log 𝐿(𝑦, 𝑥) + 𝜆 𝑥 1

❑ The added constraints improves the 
results by avoiding random 
fluctuations.
▪ Typically need new minimization algorithms 

to run fast
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General application in HEP

❑Compressed sensing is a general 
mathematical technique to solve for 
sparse signal in underdetermined 
linear system 
▪ Prove applicable in LArTPC 3D 

reconstruction, easily extendable to other 
wire-based tracking detectors.

❑Provide a solution to some of the 
previously intractable problems 

❑Cost reduction: use less 
measurement to obtain high 
performance



One Example: deconvolution with 

multiple impulse responses
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Two possible 

(position dependent) 

impulse responses 

on a single wire due 

to shorted regions

𝑦 = 𝐴𝑥 𝑦 =
𝐴1 0
0 𝐴2

𝑥1
𝑥2

dim 𝑦 = 𝑁; dim 𝑥 = 2𝑁

L1 SP!

JINST 13 P07007 (2018)



Another example: Light Matching in LArTPC

❑associate the correct T0 (light flash) to the corresponding TPC cluster

▪ combinatorial problem -> compressed sensing! (Q: what’s the y=Ax equation here?)
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Third Example: Reconstruct multiple tracks in LS
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❑ Test of principle: JUNO-like LS detector with radius 10 m. 

❑ 400 PMTs uniformly distributed

❑ Reconstruction in 1m x 1m x 1m voxels (4139 in total)

❑ Response matrix A included the photon 1/r2 spread and 
the exponential attenuation from absorption.  

❑ Put in two “vertical muon tracks”, reconstructed 
successfully

Truth
Reco

(Q: what’s the 

y=Ax equation 

here?)



Summary

❑Linear system is an important concept that finds many applications 

in LArTPC and other physics topics

❑The three types linear system each has its own applications

▪ One-to-one transform: DSP

▪ Overdetermined system: parameter optimization

▪ Underdetermined system: LArTPC imaging

• L1-regularization (compressed sensing)

❑Apply the linear system concept to your own problems 
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Backups
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Coordinate Descent

9/15/2019 25

❑Advantage of coordinate descent
▪ Fast convergence due to the function 

shape and soft-thresholding

▪ Easy to enforce “non-negative” 
constraint (only descent toward 
positive side)

▪ Easy to parallelize (can solve huge 
matrix )

❑Existing software packages:
▪ Python: scikit-learn (LASSO)

▪ R: lars, glmnet, l1logreg  

▪ Matlab: admm, 

▪ or code the algorithms yourself: 
• https://github.com/BNLIF/wire-cell-ress

(simple implementation)

https://github.com/BNLIF/wire-cell-ress


Tuning of regularization parameters

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝜒2 = 𝑦 − 𝐴𝑥 2 + 𝜆 𝑥 1 .

❑The “regularization” parameter λ is a free parameter that needs to 

be tuned to the data to produce good results

▪ Too large λ: too much weight in L1 will lead to over-sparse solutions (too many 

zero x’s)

▪ Too small λ: too little weight in L1 will not lead to good sparse solutions

▪ On the other hand, not too sensitive to λ (a set of λ’s could yield the same 

results)

▪ Optimal λ is typically obtained from scanning through a path.
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Flash matching using L1
❑Flash matching is to create associations between flashes (light) and 

TPC objects (tracks, showers)

❑Example: 2 flashes (F1, F2), 3 tracks (T1, T2, T3)
▪ 6 possible combinations (x1 … x6)

𝐹1
𝐹2

=
𝑎11 𝑎12 𝑎13 0 0 0
0 0 0 𝑎24 𝑎25 𝑎26

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6

T1 -> F1

T2 -> F1

T3 -> F1

T1 -> F2

T2 -> F2

T3 -> F2

“->” denotes “Track 

contributes to flash”

• This way naturally solves: 
– Multiple tracks contribute to one flash, like this example

– Non-matching tracks (will become 0, since other tracks can explain the flashes)

– On track contribute to multiple flashes due to late light (x will become less than 1)

F: PE’s on each PMT

aij: predicted PE’s on each PMT give one hypothesis

Chi-square  is constructed by summing over all PMTs  
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3D Imaging in LS, WC, and WbLS detectors

❑Liquid Scintillator detectors usually only considered as calorimeters. 

Event reconstruction typically only restricted to simple point-like low 

energy event or single-track (muon) event.

❑With Compressed Sensing, one can do 3D imaging in LS: 𝑦 = 𝐴𝑥

▪ y would be the charge/time from each PMT

▪ x would be the true charge (#photons) in discrete voxels

▪ A would be the response matrix to populate each voxel to the PMT, which one 

can pre-calculate based on geometry and physics

❑Similar for WC and WbLS. Since Cerenkov radiation is directional, 

one needs to add two more dimensions in angular space. 

▪ Computation requirements grows quickly with dimensions of the matrix.
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