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The Most Important Math Equation in Human History



9/16/2019 Reconstruction and Machine Learning in Neutrino Experiments, DESY Hamburg

The Most Important Math Equation in Human History

y = Ax
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The Most Important Math Equation in Human History

2~2"9 century: First appearance

in an antient Chinese book: y — Ax

“The Nine Chapters on the
Mathematical Art (LEEEA)”

216 -18™ century: Systematically
studied by many famous
European mathematicians:

JMany problems can be reduced
to System of Linear Equations

= Or Its variant forms

Descartes, Leibniz, Cramer, 180% of the work is to figure out
Gauss, Grassmann, ... how to write out the equations:

dNow: modern applications = y: the measurements
everywhere « x: the unknowns

= A: the connection between y and x.
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A Classical Application: Digital Signal Processing

JFundamental theory of linear

time-invariant (LTI) system: y g A x

= Any LTI system can be
characterized entirely by a single

function called the system'’s = y: measured discrete-time signal
Impulse response = X: the (unknown) true signal
= A:?7?
_ sqitize
x(t) — | h(t) | —— y(@) = h(t) = x(t) digit'Z

_ j It — Dx(D)de
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Impulse response
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2D Impulse response

Camera
optical
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LArTPC 2D response:
y: t * drift velocity
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Change of Basis ( )

e x(tw) — | h(Ew) [ < y(6w) = h(t,w) * x(t,w)

Domain

IDFT. DFT DFT

poman . X(f,8) = | H(f,s) |— Y(f,s) =H(f,s) - X(f,s)

A
dDiscrete Fourier Transform; ( | An>
= Convolution -> multiplication: matrix diagonalization
= FFT algorithm: O(N?%) - O(N log N) : fast computation
= Frequency-domain filters: reduce noise, regularize fluctuations
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Three Types of Linear Problems

- —_— : One-to-one transformation
dlm(y) T dlm(x) Convolution, DFT

exact
solutions

y — Ax dlm()’) > dlm(x) El)zlrire-::ltjergrﬂgﬁtc)l >> N(unknown)

dlm(y) < dlm(x) Under-determined

optimized
solutions

N(measurement) << N(unknowns)

Physicists desire an overdetermined system: reduce systematics
JReality (technology / economics constraints): experiments with

underdetermined systems are still very common
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Overdetermined linear system with uncertainties

y—Ax2

y — Ax weighted least square XZ _

(maximum likelihood) o)
dim(y) > dim(x)

More general: )(2 — (y — A.X')T V1. (y — AX) )
(ATv—lA)—lATv—l .y

Solution: X

1 Usage: parameter optimization (aka. fitting). See Xin’s next talk for examples
 Main challenge: fast computation when dimension is large
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Underdetermined system: TPC 3D image reconstruction

dPad-readout TPC: one-to-one / over-determined system
= A 3-D image (2D pixels + time) can be directly obtained without ambiguity.

JWire-readout TPC: under-determined system

= Large LArTPCs typically use wire readout due to the cost and power
consumption constraints.

= Limited number of wire planes (typically 3): information loss (n? - > 3n)

= Difficulty is topology dependent
- worst case: isochronous event where electrons arrive at the wire planes at the same time.

1track ~ 3tracks 1 track
' ' 1 shower
same wires are hit, which
e topology is the true event?



9/16/2019 Reconstruction and Machine Learning in Neutrino Experiments, DESY Hamburg

Induction view 1
-w

JCAT Scan OLAITPC

» Detector (x-ray generator/receiver) = Objects (ionizing electrons) move
moves across the object (body) across detectors (wire planes)

= Axial projections (~180) by detector - Axial projections (~3) by wire orientation

rotation
« Cross section can be reconstructed at = Cross section can be reconstructed at

each position along detector movement ~ €ach time slice along electron driit
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y = Ax

[ul)
u2
v

v2

y: measured charge signal on each wire
X: the (unknown) true charge deposition in

\v3)
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each possible cell
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cells (determined solely by wire geometry)
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Solve underdetermined linear problem: regularization

JPrevious example has 6 x =|((ATv-tA)tATv-1.y
unknowns, 5 equations: }
under-determined system non-invertible, 2 zero-eigenvalues out of 6.
Procedure
JAdding constraints: find the d Remove unknowns until
sparsest solution (applies to most equations can be solved, then
physics events): LO-regularization find the best solution with the
S . minimum y?
minimize |jx[l, , subject to: y = Ax 0 a combinatorial problem
(LO-norm: number non-zero elements) o 2 out of 6: 15 combinations

o 10 out of 40: 0.8 billion
NP-hard! combinations
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Compressed Sensing (L1-regularization)

dBreakthrough:

mathematical proof that LO
problem can be well

approximated
problem (Com

oy the L1

o re S S e d Emmanuel Candes. (Photo cour-  Justin Romberg. (Photo courtesy Terence Tao. (Photo courtesy of

Sensing, Canc
Romberg, and

tesy of Emmanuel Candes.) of Justin Romberg.) Reed Hutchinson/UCLA.)

https://arxiv.org/abs/math/0503066
Tao 2005.)

Sparse projections: 11 radial lines

minimize ||x||, , subject to: y = Ax

(L1-norm: sum of absolute values of the elements)

Or, equivalently, minimize

f=(-A0" -V

. — Ax _I_ A x available portion of the spectrum ack-projection estimate
y 1 (11 radial lines)

Tomography: reconstruct image with far less projections


https://arxiv.org/abs/math/0503066
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L1 Regularization O Features of L1 regularization

= Convex problem

1 Brief History of L1 regularization = o
- local minimum == global minimum

= Wavelet soft thresholding (Donoho and T
Johnstone 1994) = Fast minimization

- efficient algorithms to quickly find the
global minimum e.g. coordinate descent
= Shrink the irrelevant variables to
. exactly zero leading to the desired
* Extended to many linear-model S arsc\e/ solution du?e to the specific
settings, e.g. Survival models E £ th 2’f . P
(Tibshirani, 1997) shape ot the = tunction

- compared with L2 regularization (RIDGE),
which also shrinks the variables, but only
to small non-zero values

= Lasso regression (Tibshirani 1995)

= Same idea in Basis Pursuit (Chen,
Donoho and Saunders)

= Gives to a new field Compressed
Sensing (Candes, Romberg, Tao,
2005): near exact recovery of sparse
signals in very high dimensions
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Performance in Wire-Cell %

Wire-Cell
Truth // L1 ff"
//, :*"f
- ,// \‘ :
. =
Ay L L8
| O Typically ~tens of seconds to
x reconstruct the whole 3D image
' (originally a few hours)

JINST 13, P05032 (2018)
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Practical Lessons from MicroBooNE

d Expectation (from LArTPC
principle): same charge
measured three times by
each wire plane

= Reality: takes two years to
Improve signal processing to P Timeometps) 2 Time Offuet s
achieve charge matching (e) 1D deconvolution, 30° < 6, < 50°. (f) 2D deconvolution, 30° < 6. < 50°.

among different planes

d Expectation: 3 wire
measurements everywhere

= Reality: non-functional channels

cause in some regions only 2 or : | L
even 1 wire-plane measurement ﬁ\ k.S
e

available — lots of noises and o _
ghost tracks The devil is Iin the detall

! ol

Arb. Units
Arb, Units
<
3

20 3
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More on Compressed Sensing

Advanced L1 regularization General application i_n H_EP
0 Many ways to extend the simplest L1 0 Compressed sensing Is a general

regularization, by adding additional mathematical technique to solve for
Known constraints in the y* = sparse signal in underdetermined
(v — Ax)* + Allx|ly linear system

= Grouped Lasso: add penalty based on group

= Fused Lasso: add penalty based on
connectivity

= Prove applicable in LArTPC 3D
reconstruction, easily extendable to other

- Other customized penalty terms in the x2 wire-based tracking detectors.
definition | | | 0 Provide a solution to some of the
= Or even generalize to non-linear case: : :
v2 = —2logL(y,x) + Allx|l; previously Intractable problems
d The added constraints improves the - Cost reduction: use less
]EleSlt"tStby avoiding random measurement to obtain high
uctuations. performance

= Typically need new minimization algorithms
to run fast
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4 = One Example: deconvolution with

of wems | sewv . multiple impulse responses
é;z Two_p_ossible — 1 _ A1 0 (xl)
A A (position dependent) y — AX y O AZ xZ

Impulse responses
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Another example: Light Matching in LArTPC

PMT flashes |
< MicroBooNE Preliminary _ 2
d \ \ a9
g //‘ - v - \ S i \N\“do‘N i
§ ,z"// " ’ \ o \ | _8) ‘_ WGO 0.002 0.004 0.006 ‘%égf(‘mg')m
: ~ 4
£ oDrift i / g :
© 4 v I
N < / /‘ \ 2
& — Beam
oo- -/ L
N P = | 050 "2 4
Time (ms)
20-30 TPC activities 40-50 PMT activities

O associate the correct T, (light flash) to the corresponding TPC cluster
= combinatorial problem -> compressed sensing! (Q: what's the y=Ax equation here?)
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Third Example: Reconstruct multiple tracks in LS

- Test of principle: JUNO-like LS detector with radius 10 m.
2 400 PMTs uniformly distributed
d Reconstruction in Im x 1m x 1m voxels (4139 in total)

0 Response matrix A included the photon 1/r? spread and
the exponential attenuation from absorption.

a Put in two “vertical muon tracks”, reconstructed
successfully

Reco
Truth

(Q: what’s the
e y=AX equation
here?)
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Summary

dLinear system is an important concept that finds many applications
iIn LArTPC and other physics topics

dThe three types linear system each has its own applications
= One-to-one transform: DSP
= Overdetermined system: parameter optimization
= Underdetermined system: LArTPC imaging
- L1-regularization (compressed sensing)

JApply the linear system concept to your own problems
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Backups
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Coordinate Descent

. 1 N P 2.2 p
ming 57 > (Yi — j=1 i35) + A Zj:l 135
Suppose the p predictors and response are standardized to have
mean zero and variance 1. Initialize all the 3; = 0.
Cycle over j = 1.2,....p.1.2,... till convergence:
e Compute the partial residuals r;; = y; — >, oy Tik k.
e Compute the simple least squares coefficient of these residuals

on jth predictor: 37 = 5 > ;2 Tij7i

e Update 3; by soft-thresholding:

Bj — S(BLA)
= sign(57)([55] — M+ ’

JAdvantage of coordinate descent

= Fast convergence due to the function
shape and soft-thresholding

= Easy to enforce “non-negative”
constraint (only descent toward
positive side)

= Easy to parallelize (can solve huge
matrix )

JEXxisting software packages:

= Python: scikit-learn (LASSO)

= R: lars, glmnet, [1logreg

= Matlab: admm,

= or code the algorithms yourself:

- https://github.com/BNLIF/wire-cell-ress
(simple implementation)



https://github.com/BNLIF/wire-cell-ress
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Tuning of regularization parameters
minimize y* = (y — Ax)? + A||x||; .

dThe “regularization” parameter A is a free parameter that needs to
be tuned to the data to produce good results

= Too large A: too much weight in L1 will lead to over-sparse solutions (too many
Zero X's)

= Too small A: too little weight in L1 will not lead to good sparse solutions

= On the other hand, not too sensitive to A (a set of A's could yield the same
results)

= Optimal A is typically obtained from scanning through a path.
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Flash matching using L1

dFlash matching is to create associations between flashes (light) and

TPC objects (tracks, showers)

dExample: 2 flashes (F1, F2), 3 tracks (T1, T2, T3)

= 6 possible combinations (x1 ... x06)

F: PE’'s on each PMT

a;: predicted PE’s on each PMT give one hypothesis
Chi-square is constructed by summing over all PMTs

[

“.>” denotes “Track
contributes to flash”

T1->F1
T2 ->F1

Fi\ _ (a1 a2 a3 0 0 0Y\] X3 | T3->F1
(Fz) B ( 0 0 0 ays, ass a26) X4 | T1->F2
X5 | T2->F2

\x6/ T3 -> F2

« This way naturally solves:
— Multiple tracks contribute to one flash, like this example

— Non-matching tracks (will become 0, since other tracks can explain the flashes)
— On track contribute to multiple flashes due to late light (x will become less than 1)
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3D Imaging in LS, WC, and WbLS detectors

aLiquid Scintillator detectors usually only considered as calorimeters.

Event reconstruction typically only restricted to simple point-like low
energy event or single-track (muon) event.

AWith Compressed Sensing, one can do 3D imaging in LS: y = Ax
=y would be the charge/time from each PMT
= x would be the true charge (#photons) in discrete voxels

= A would be the response matrix to populate each voxel to the PMT, which one
can pre-calculate based on geometry and physics

dSimilar for WC and WDbBLS. Since Cerenkov radiation is directional,
one needs to add two more dimensions in angular space.
= Computation requirements grows quickly with dimensions of the matrix.



