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The GERDA Experiment

I Search for 0νββ decay in 76
Ge at Qββ = 2039 keV

I Array of isotopically enriched HPGe detectors,
suspended in liquid argon

I Ultra-low background setup, located underground at LNGS
(1400 m rock overburden, 3500 m water equivalent)

I Currently in GERDA Phase II, data taking ends in 2019

I Preparations for successor experiment LEGEND-200
under way
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Current GERDA Result
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Phase I plus Phase II:

I Total exposure:
82.4 kg yr

I T 0ν
1/2 > 0.9× 1026 yr

(Frequentist)

I T 0ν
1/2 > 0.8× 1026 yr

(Bayesian)

Phase II design goals reached:

I Background in ROI ≈ 6× 10−4 cts/(keV· kg· yr)
I Sensitive to T 0ν

1/2 of 1× 1026 yr (90% CL)

NEUTRINO 2018 (soon to be published in Science mag.), all limits: 90% CL/CI
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The Gerda Setup
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GERDA Phase-II Detector Array

I 7 string, 40 detectors in total:
I 7 enriched coax-type (15.8 kg)
I 30 enriched BEGe-type (20 kg)
I 3 natural coax-type (7.6 kg)

(replaced Summer 2018)

I Array enclosed by LAr veto
[arXiv:1711.01452]
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GERDA Background Reduction E�ciency
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50 keV blinding

I State-of-the-art radiopure setup results in
very low background - but not low enough

I Almost pure 2νββ spectrum after LAr veto:
still not good enough for 0νββ search

I After pulse-shape discrimination (PSD):
ultra-low background, ≈ 6× 10−4 cts/(keV· kg· yr) in ROI

I PSD based on signal processing and ML techniques
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Pulse-Shape Discrimination

I PSD: reject multi-site and surface events
based on detector signal shape

I Methods: A/E (BEGe detectors), ANN (coaxial detectors)
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BEGe Detectors
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I Main GERDA Phase-II technology

I Pro: easy and e�ective PSD via A/E

I Cons: low mass (bigger detectors hard to deplete)
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A/E PSD for BEGe Detectors
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I Signal shape of Bege detectors nearly independent
of interaction position for most of detector volume,
due to weighting potential

I Ratio of max. current and charge (A/E) discriminates
between single-site events (SSE) an multi-site events (MSE)

I Can also be used to reject α-events
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A/E-Classi�er

I Raw A/E classi�er is energy-dependent,
needs careful calibration for each detector
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A/E-Cut Event Survival
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A/E Time Stability
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I A/E not stable over time,
can jump due to tiny changes in experiment

I Jumps not always understood

I Needs manual treatment during analysis, for each detector
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Coaxial Detectors
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I Inherited from GERDA Phase-I

I Pro: high mass

I Con: signals highly position dependent, can't use A/E
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ANN PSD for Coaxial Detectors

I Arti�cial neural network (ANN) can discriminate
SSE/MSE in coaxial detectors [EPJC 73 (2013) 2583]

I ANN input: time where charge pulse reaches
0.01, 0.03, . . ., 0.99 of full height

I Multi-layer perceptron, 50 inputs, two hidden layers
(size 51 and 50), single output (0 for MSE, 1 for SSE)

I Successful, used in all o�cial GERDA results

I Need to train separate ANNs speci�c to each detector,
HPGe detectors are individuals

I Need to use labeled measurement data,
simulating realistic detector pulse shapes very di�cult

I Problem: ANN has approx. 5000 parameters,
have barely enough training data for each detector
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SSE/MSE ML training data

Pair production + 
Double escape

Full energy 
deposition Single escape Multiple Compton 

scattering + escape
Single Compton 
scattering

I Certain peaks/regions of 228
Th calibration spectra

dominated by either SSE or MSE events
I Can be used as (impure) labeled training data
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ANN Classi�er Values
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I Large overlap in classi�er value between SSE (red area)
and MSE (green area): coax signals often too similar,
also training data labels are impure

I E�ective MSE-cut comes with a cost:
loss of overall e�ciency
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ANN-Cut Event Survival
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I ANN is e�ective for MSE rejection,
but α-rejection needs additional rise-time cut



Oliver Schulz � ML for GERDA and beyond 17

GERDA Coax-ANN Time Stability
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I ANN classi�er is stable over time, relative to cut sensitivity,
unlike A/E
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Future Challenges

I GERDA will be succeeded by LEGEND-200

I LEGEND-200 will use same cryostat, but:
I Needs even lower background
I Many more detectors
I Adds two more detector types

I In addition to further improvements in radiopurity
will need even better PSD techniques
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MPP R&D on ML-based Advanced PSD

I Current R&D at MPP Munich: deep-learning PSD
suitable for all LEGEND detector technologies

I Challenge: lots of parameters, little labeled training data

I But: have lots of unlabeled calibration data

I Approach: encoder plus classi�er (E+C)
[EPJC 79 (2019) 450]

I Unsupervised learning (auto-encoder) for dimensionality
reduction, plus classi�er (perceptron) with few parameters

I Shown to work for BEGe and coaxial detectors, fully automatic,
no relevant time or energy dependence

I Works for SSE/MSE discrimination, progress on β-rejection,
may also tackle α-rejection (challenging)
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E+C Signal Preprocessing

I Pre-processing of signals using domain knowledge
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E+C Auto-Encoder

Input ReconstructionFeature vector

Encoder Decoder
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I Encoder: 256 input values, one convolutional layer (1D)
then max-pooling to 64, then one dense layer, 7 outputs.

I Decoder: reverse of Encoder
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Auto-Encoder Reconstruction Error

I Auto-Encoder e�ectively acts as de-noiser

I Reconstruction error matches baseline noise level
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E+C Classi�er Perceptron

Input ClassificationFeature vector

Encoder

Classification

… …… … …

I Classi�er: 7 inputs (from encoder), two dense layers
(size 10 and 5), one output (0 for MSE, 1 for SSE)
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E+C Classi�er Output
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Lab detector, segmented BEGe

I No signi�cant energy dependence, relative to cut criterion



Oliver Schulz � ML for GERDA and beyond 25

E+C vs. A/E
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I E+C fully competitive with A/E,
but needs no correction for energy or manual tuning
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Conclusions and Outlook

I GERDA Phase II is background-free:
Expect < 1 BG count over 100 kg · yr design exposure,
due to radiopurity, LAr veto and sophisticated PSD

I PSD techniques are absolutely essential,
GERDA combines classical signal processing (A/E)
and machine learning (ANN)

I Future experiments will likely require
even more complex PSD techniques

I R&D at MPP: auto-encoder plus classi�er
successful across detector types,
can scale to systems with many detectors

I Will pursue this further,
using more advanced techniques


