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Plan for the talk

Introduction to MINERvA 

Application of Convolutional Neural Network for finding the 
interaction vertex 

•       Deal with the possible bias from training sample: DANN 

•       Evolutionary algorithm: MENNDL 

Classification of hadron multiplicity using ML 

•      Transfer learning  

Application of semantic segmentation approach for neural pion 
reconstruction
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MINERvA Experiment

MINERvA is a dedicated neutrino-nucleus experiment situated at   
    Fermilab’s NuMI Beam along with other two experiments MINOS and 
    NOvA

A precise understanding of the A-dependence of the neutrino-nucleus  
 cross section is important to reduce systematic uncertainties in the  
 measurements of oscillation experiments. 

MINERvA having different nuclear targets (iron, carbon, lead, water,  
    helium, scintillator) and excellent tracking ability, is able to provide  
    high precision measurement of neutrino interactions on various nuclei 
    in the 1-20 GeV energy range. 
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MINERvA Detector
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• Consists of a core of scintillator strips surrounded by  
       ECAL and HCAL

• MINOS Near Detector for muon  
  charge and momentum

IceCube

Particle

Astrophysics

Symposium

2013

C.L. McGivern

Outline

Motivation

NuMI Beam

MINERvA

Experiment

CCQE Results

CCIncPion

Status

Conclusion

NuMI Beam
Neutrinos at the Main Injector

120 GeV proton beam from
the Main Injector

Average spill of 35x1012

Protons on Target (POT),
with a beam power of
300-350 kW at ⇠0.5 Hz

Advantages - tunable beam
Can change the energy of the beam

by moving the target wrt the horns

Neutrino or anti-neutrino beam mode

depending on horn current

5 / 25

Medium energy  
flux era
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true vertex

reconstructed vertex

With the increase of our beam energy,  there is  an increase in the hadronic showers 
near the event of interactions. 
Cause more difficulty in vertexing with increase rates of failure in getting the correct 
vertex position

Vertex reconstruction: Why ML? 
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• Different targets built with combinations of different materials

Nuclear Targets

14

Nuclear Target Region"

Jorge G, Morfín - Fermilab 28 

Fiducial: within 85 cm apothem of beam spot 

Active 
Tracker 

W
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er
 T
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NUC. TARGET 1 
Fiducial Mass  
Fe: 323 kg 
Pb: 264 kg 

NUC. TARGET 2 
Fiducial Mass  
Fe: 323 kg 
Pb: 266 kg 

NUC. TARGET 3  
Fiducial Mass   
C: 166 kg 
Fe: 169 kg 
Pb: 121 kg 

NUC. TARGET 4  
Fiducial Mass  
Pb: 228 kg 

NUC. TARGET 5  
Fiducial Mass 
Fe: 161 kg 
Pb: 135 kg 

WATER TARGET  
Fiducial Mass    
625 kg H20 

1 2 3 4 5 

Helium Target  
Fiducial Mass  
0.25 tons  

4 tracker modules between each target 

CHCarbon Iron Lead

Make images for 
 three different 
views

Find the location of the event vertex

Treat the localization as a classification problem

ML Approach To Determine Event Vertex

DNN(Convolutional 
neural network)

Classify the location 
of the interaction

arXiv:1808.08332
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Input images
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Convolutional neural network (CNN)
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Stacking layers of convolutions leads from geometric / spatial representation to semantic 
representation

Convolutional  
tower

Label predictor

x view u view v view

Convolutional 
tower

Convolutional 
tower

Each view represents a different 
angle of the interaction, hence,  
a pixel location in one view does  
not correspond to that same pixel  
location in another view

We have three separate 
convolutional towers that look at 
each of the X, U, and V images.
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Track-based approach vs ML approach

Signal purity has been improved by the factor of 2-3 using ML technique 
compared to track based approach 
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Be aware of Model bias!
Train and prediction in different domains

• Test with unlabeled data: in our case it is real data (target domain)

If Monte Carlo is in good agreement with data, life is good…. but

Our models are not perfect!

Domain discrepancy arises

Find ways to  reduce any  biases  in  the algorithm  that  may  come from  
training  our  models  in  one  domain   and  applying  them  in  another

Domain adversarial neural network may help us here!

• Train with labeled data: in our case it is Monte Carlo (source domain)
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  Train from the labeled source domain (MC ) and unlabeled target domain (real 
data)

Goal to achieve the features:  
1) discriminative for the main learning task on the source domain     
2) indiscriminate with respect to the shift between domains

 

Convolutional 
unit

Convolutional 
unit

Convolutional 
unit

Label predictor

Inner product

Domain classifier

This adaptation behavior 
can be achieved by adding a 
gradient reversal layer with 

few standard layers 

X view U view V view

Domain Adversarial Neural Network (DANN)
http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1505.07818
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http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1505.07818
http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:1505.07818
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Maximize the loss of the domain  
classifier so that network can not  
distinguish between source and  
target domain

Domain classifier:  
works internally

Label predictor:  
output 

Minimize the loss of the label  
classifier so that network can  
predicts the input level 

How does DANN work?

With DANN: 
Two classifiers into  
the network

The network develops an insensitivity to features that are present in one domain but  
not the other, and train only on features that are common to both domains
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How to test DANN? 

Find source and target with distinct features 

our source and target domains may be too similar for the domain classifier to be  
able to distinguish between them.

We train with Monte Carlo (MC) events and use different MC as target 

We tried by few ways to get the target sample having different features 
    than source: changing the flux, physics model, kinematic division etc

arXiv:1808.08332
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Training sample 
(Source domain) DANN partner Model

FSI off (1.2M) N/A Out of domain

FSI on(1.2M) N/A In domain

FSI off(1.2M) FSI on(1.2M) Out of domain with in 
domain DANN partner

FSI off(1.2M) FSI on(0.6M)
Out of domain with in 

domain DANN 
partner(half sample)

FSI On/Off
The expectation: 
CNN in domain 
will perform better 
than CNN out of 
domain.

Check the effect of 
size of training 
sample on the 
performance of the 
model

The expectation:  though 
model is trained  “out of  
domain”, it would show the 
similar performance as 
“CNN in domain” since we 
consider “in domain” 
DANN  
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Red curve: Adding a DANN partner to the model trained in the out-of domain 
we are able  to recover the performance of the model natively trained in the 

correct domain

Green curve: 
Perform worse than red curve as the sample size is reduced by half 

Perform better than than black curve as it has information from the correct 
domain 

DANN helps to recover the domain information

 

http://arxiv.org/abs/arXiv:1808.08332
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Vertex reconstruction :MENNDL 

We use an evolutionary algorithm - MENNDL(Multi-node Evolutionary  
  Neural Network for Deep Learning) - to evolve neural network topologies  
  using the Titan supercomputer.

• Evolutionary algorithm as a solution for searching hyper-parameter space 
for deep learning 

• Leverage more GPUs; ORNL’s Titan has 18k GPUs 
        -Next generation, Summit, will have increased GPU capability

We obtained model from MENNDL for vertex finding model.  
 We compare the performance of MENNDL model with the “hand craft” 

     or artisanal model developed inside MINERvA

the MENNDL models are optimized over short run (5000 iteration)

MINERvA and NOvA have jointly worked on an automated  
NN-architecture optimization problem with computer scientists at at  
Oak Ridge National Laboratory (ALCC project) 
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Reconstructed vertex distribution from Anti-neutrino events
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ML: Hadron multiplicity at final state
Goal: Get the prediction for number charged hadrons at the final state 
using Machine learning algorithm as it is difficult to do in track-based 

method.  

 Training is done with Charge current inclusive sample 

 We count proton, pi+, pi-, K+, K- as number of charged hadrons with    
kinetic energy above 50 MeV.  Neutron, photon, neutral pions are not   
included.  

We applied ML prediction for hadron multiplicity in low recoil 
analysis. Events CC inclusive events where reconstructed three 
momentum transfer is between 0.4 to 0.8 GeV.

Train the network

Application of the trained model
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Hadron Multiplicity: Challenge to ML  

!
X view U view

Hadron

Hadron Muon

One proton <50 MeV, another proton is 
at high angle, tracker can not recognize it, can ML? 

For traditional tracking algorithms, threshold is 100 MeV when the hadron is  
going forward

Module number
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Implementing the transfer learning 
Transfer learning is a machine learning method where a model developed for a 

task (e.g., vertex finding ) is reused as the starting point for a model on a 
second task (e.g., hadron multiplicity)

• MENNDL based vertex finding model is trained over large 
Monte Carlo Sample. This model is reused as starting point for 
a model of hadron multiplicity 

• Freeze the weights of the convolutional layers and run upto 
few epochs for hadron multiplicity 

• Next unfreeze the weights of the convolutional layers and run 
up to another few epochs: fine tuning
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ValidationAccuracy comparison

Validation accuracy 
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With Transfer learningWithout Transfer learning
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Without Transfer learning With Transfer learning
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Module number

Event classified by track-based and ML-based method

pi+ Proton

Muon

Track-based method recognized the hadron with 705 MeV but can not find the  
hadron with kinetic energy 93 MeV 

       ML-based method has been able to find both the hadrons

X view
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Comparisons among Truth, Track-based and 
ML-based 

Number of 
hadrons Truth Value Track-

based

ML without 
transfer 
learning

ML with 
transfer 
learning

0 4773 23673 4415 4473

1 20302 12612 19928 21809

2 10619 899 12804 10283

>=3 1364 88 1080 794

Threshold 100 MeV Threshold 50 MeV
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Event distribution for different hadron 
multiplicity
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Event distribution for different hadron 
multiplicity
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Neutral pion reconstruction using 
Semantic Segmentation via U-Resnet
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Semantic segmentation
we deal our vertex fining problem by performing image classification.

classifying what appears in an image into 
one out of a set of predefined classes

Semantic segmentation is understanding an image at pixel level i.e, we  
     want to assign each pixel in the image an object class

image semantic segmentation is the task of 
 classifying each pixel in an image into  
one out of a set of predefined classes

classify each pixel - is this pixel,  
belongs to muon/proton/pion….?

classifying the region of interaction vertex 
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Data format and algorithm

• An analysis framework developed for processing LArTPC image data this software is  
generic use by supporting C++ data structures, IO interface, and data processing  
machinery.  

• It is used to directly manipulate the image data with or without OpenCV.  
• It plays a key role to interface with open source deep learning softwares including  

      caffe by Berkeley Lab. and TensorFlow by Google. 
• ROOT format- easy to handle, can do other things like crop images , resize images etc

Image processing is done by LarCV package(https://github.com/DeepLearnPhysics/larcv2.git), 
developed by Kazuhiro Terao et al.

U-resnet(https://github.com/DeepLearnPhysics/u-resnet.git) is used to implement the  
    semantic segmentation algorithm 

• Hybrid of the U-Net(arxiv: 1505.04597) and residual network (arxiv: 1512.03385,  
          arxiv:1603.05027) 
                                                                                                            

https://github.com/DeepLearnPhysics/larcv2.git
https://github.com/DeepLearnPhysics/u-resnet.git
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U-Resnet

Goal: Tag the electromagnetic-like(em-like), non-emlike pixel.
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True vs predicted event
St
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r

Module number EM like: light blue 
NON-EM like: yellow
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Confusion matrix

Class
Diagonal value 

from row 
normalized matrix

0 1

1 (EM-like) 0.86

2(Neutron) 0.76

3(Non-EM like) 0.93

EM likeEM like



Reconstruction and Machine Learning in Neutrino  
Experiments, Desy Hamburg, 17th September, 2019Anushree Ghosh, UTFSM, Chile !35

Confusion matrix

Class
Diagonal value 
from column 

normalized matrix

0 1

1 (EM-like) 0.85

2(Neutron) 0.47

3(Non-EM like) 0.97
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Invariant mass distribution of neutral pion 

Traditional reconstruction With ML prediction (Only x view)
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Summary
We see significant improvement using ML based reconstruction over track-based  

method for vertex reconstruction at nuclear target region. 

We simulated with different FSI behavior and we saw the cross domain 
performance validation. However, by using DANN, to restrict the feature extraction 
only to features in both domains,  we can train a domain-invariant classifier 

We compared MENNDL-based models with artisanal. It shows that human time 
can be saved by utilizing the computation time 

We have been applying ML-based classification for counting the number of 
hadrons and we tested the transfer learning technique. We are testing different loss 
functions (such as bilinear loss) and Resnet in order to improve the performance. 

Semantic segmentation approach has been successfully applied to reconstruct the 
neutral pion at the final state using prediction for one view. Next is to apply the 
prediction from all three views. 

We are planning to apply DANN in hadron multiplicity and neutral pion 
reconstruction problem 
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Thank you!

From MINERvA Collaboration:
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Backup slides
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Introduction

Inner Detector

Outer Detector

Outer detector (OD): 
 composed of a heavy steel frame, interspersed with  
scintillator bars, which serves both for calorimetry  
and as a support structure for the detector

Inner Detector (ID): 
Plastic scintillator strips create light 
from moving charged particles
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Signal purity has been improved  
by the factor of 2-3 using ML  
technique compared to track  
based approach 
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Green curve: 
• Perform worse than red curve as the sample size is reduced by half 
• Perform better than than black curve as it has information from the 

correct domain 

!42

Effect of Sample size on the performance of 
DANN
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Effect of Sample size on the performance of 
DANN
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Effect of Sample size on the performance of 
DANN
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Effect of Sample size on the performance of 
DANN
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Infer the accuracy of CNN from its structure
 proposed a systematic methods to uniformly extract architectural parameters from different 
architecture of CNNs

 demonstrated the predictive nature of those architectural attributes of CNNs 
in two specific problems—MINERvA Vertex Finding and MINERvA Hadron Multiplicity Counting—through 
building classification models, which can predict whether a CNN’s architecture is likely to perform better 
than a certain accuracy threshold or not
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U-resNet(https://github.com/DeepLearnPhysics/u-resnet.git)

Hybrid of the U-Net and residual network

U-Net (arxiv: 1505.04597) 
 and Res-Net (arxiv: 1512.03385,  
arxiv:1603.05027)
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Application: Neutral pion reconstruction

To test application, we can consider the signal: µ + 1 π0 + Χ (includes 
mesons).

In the x view, Remove clusters from consideration where the 
the energy weighted pixel probability of being em-like is 
under some threshold. 

Clusters are then used in blob formation via angle scan 
routine.
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Step 1: Make images

Start with three class image : EM , non-EM , and background(zero label)

Data image:hit (X-view) PID image(X-view)

We already had HDF5 image format. I converted them into LarCV

Data image :time 
(X-view)
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Step 1: Make images

Start with three class image : EM, non-EM , and background(zero label)

Data image:hit (X-view) PID image(X-view)

We already had HDF5 image format. I converted them into LarCV

Data image :time 
(X-view)
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St
rip

 n
um

be
r

Module number

True vs predicted event
Model :layered model, 4class; Class 0-zero label,  
class 1- EM like, class 2- Neutron, class 3- Non-EM-like 
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Train and validate the network
Trained the network for x view separately. 

Loss is calculated using softmax_with_logits to calculate the loss  
     per pixel. Finally the loss is summed over all the pixel

Ran upto 15 epoch  
       

Training sample: Monte Carlo events 
          -Full detector configuration, only CC events 
          -1M images for training 
          -train over only X view  
          -Also, we layered three views and train over them all together  
          - Used both Hit and time informations (two channels)

4 classes (non zero training accuracy 93%)

Tested on me1F MC sample. For creating the confusion matrices, we use 50K 
     events.  


