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Plan for the talk

& Introduction to MINERVA

¢ Application of Convolutional Neural Network for finding the
interaction vertex

Deal with the possible bias from training sample: DANN
Evolutionary algorithm: MENNDL

¢ Classification of hadron multiplicity using ML
 Transfer learning

¢ Application of semantic segmentation approach for neural pion
L reconstruction 4
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MINERVA Experiment

® MINERVA is a dedicated neutrino-nucleus experiment situated at
Fermilab’s NuMI Beam along with other two experiments MINOS and
NOvVA

® A precise understanding of the A-dependence of the neutrino-nucleus
cross section 1s important to reduce systematic uncertainties in the
measurements of oscillation experiments.

DMINERVA having different nuclear targets (iron, carbon, lead, water,
helium, scintillator) and excellent tracking ability, 1s able to provide
high precision measurement of neutrino interactions on various nuclei
in the 1-20 GeV energy range.
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MINERVA Detector
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Vertex reconstruction: Why ML?

{ $With the increase of our beam energy, there is an increase in the hadronic showers }
i near the event of interactions.
- $Cause more difficulty in vertexing with increase rates of failure in getting the correct}
{  vertex position
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ML Approach To Determine Event Vertex

arXiv:1808.08332

Find the location of the event vertex

t

4 tracker modules between each targe |

NUC. TARGET 1 NUC. TARGET 2 NUC. TARGET 3 WATER TARGET NUC. TARGET 4
Fiducial Mass Fiducial Mass Fiducial Mass Fiducial Mass Fiducial Mass

Fe: 323 kg Fe: 323 kg C: 166 kg 625 kg H20 Pb: 228 kg
Pb: 264 kg Pb: 266 kg Fe: 169 kg .
Pb: 121 kg /\

Fiducial: within 85 cm apothem of beam spot

Helium Target
Fiducial Mass
0.25 tons

NUC. TARGET 5
Fiducial Mass
Fe: 161 kg

Pb: 135 kg

Make images for . . .
three different DNN(Convolutional | Classity the location

views neural network) of the interaction
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Convolutional neural network (CNN)

Stacklng layers of convolutlons leads from geometrlc / spatlal representatlon to semantlc '»

representatlon
Convolutions
- Classifier
j { 7
Each view represents a different
"Semantics” . .
/ angle of the interaction, hence,
| |/ "Space & Shapes" a pixel location in one view does

not correspond to that same pixel
location 1n another view

X view u view vV view

We have three separate
convolutional towers that look at

each of the X, U, and V 1images.
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Track-based approach vs ML approach
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Be aware of Model bias!

® Train and prediction in different domains

e Train with labeled data: in our case 1t 1s Monte Carlo (source domain)

» Test with unlabeled data: 1n our case it 1s real data (target domain)

If Monte Carlo 1s 1n good agreement with data, life 1s good.... but

Our models are not perfect!

Domain dlscrepancy arises

! Flnd Ways to reduce any blases in the algorlthm that may come from
{ training our models in one domain and applying them in another 1}

Domain adversarial neural network may help us here!

Reconstruction and Machine Learning in Neutrino
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Domain Adversarial Neural Network (DANN)

http /ladsabs.harvard. edu/cgl-bln/blb query"aerv 1505.07818

Tram from the labeled source domam (M C ) and unlabeled target domam (real
' data)

V.

| Goal to achieve the features:
\ 1) discriminative for the main learning task on the source domain |
2) indiscriminate with respect to the shift between domains |

X view U view V view

This adaptation behavior
can be achieved by adding a
gradient reversal layer with

few standard layers

Domain classifier

Reconstruction and Machine Learning in Neutrino
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How does DANN work?

Minimize the loss of the label
classifier so that network can

predicts the mput level
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forwardprop  backprop (and produced derivatives)

Maximize the loss of the domain
classifier so that network can not
distinguish between source and
target domain

With DANN:
Two classifiers into
the network

Label predictor:
output

works internally

The network develops an insensitivity to features that are present in one domain but
not the other, and train only on features that are common to both domains

Anushree Ghosh, UTFSM, Chile
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How to test DANN?

arXiv:1808.08332

¢ Find source and target with distinct features

our source and target domains may be too similar for the domain classifier to be
able to distinguish between them.

¢ We train with Monte Carlo (MC) events and use different MC as target

We tried by few ways to get the target sample having different features
than source: changing the flux, physics model, kinematic division etc

14 Reconstruction and Machine Learning in Neutrino
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FSI On/Oft

The expectation:
CNN in domain
will perform better
than CNN out of
Training sample domain.
5 p DANN partner Model
(Source domain)
FSI off (1.2M) N/A Out of domain
FSI on(1.2M) N/A In domain
Out of domain with in
FST off(1.2M) FSI on(1.2M) domain DANN partner
----------------------------------------------------------------------------------------------------------------------------------------- Check the effect of
ut of domain with in size of training
FSI off(1.2M) FSI on(0.6M) domain DANN <+——_ sample on the
partner(half sample) PerflOIimance of the
mode

/

' The expectation: though
model is trained “out of
domain”, it would show the
similar performance as
“CNN in domain” since we

consider “in domaimn”
DANN

\, J

Anushree Ghosh, UTFSM, Chile
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DANN helps to recover the domain information
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http://arxiv.org/abs/arXiv:1808.08332

Vertex reconstruction :MENNDL

® MINERVA and NOvVA have jointly worked on an automated

NN-architecture optimization problem with computer scientists at at
Oak Ridge National Laboratory (ALCC project)

® We use an evolutionary algorithm - MENNDL(Multi-node Evolutionary
Neural Network for Deep Learning) - to evolve neural network topologies
using the Titan supercomputer.

* Evolutionary algorithm as a solution for searching hyper-parameter space
for deep learning

* Leverage more GPUs; ORNL’s Titan has 18k GPUs

-Next generation, Summit, will have increased GPU capability

, Ef We compare the performance of MENNDL model with the “hand craft”
i or art1sanal model developed 1n31de MINERVA

the MENNDL models are optimized over short run (5000 1teration)

Reconstruction and Machine Learning in Neutrino
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N Events /1.7 cm

N Events /1.7 cm

Reconstructed vertex distribution from Anti-neutrino events
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ML: Hadron multiplicity at final state

Goal: Get the prediction for number charged hadrons at the final state
using Machine learning algorithm as 1t 1s difficult to do 1n track-based
method.

Train the network

M Training is done with Charge current inclusive sample

¢ We count proton, pi+, pi-, K+, K- as number of charged hadrons with
kinetic energy above 50 MeV. Neutron, photon, neutral pions are not
included.

Application of the trained model

M We applied ML prediction for hadron multiplicity in low recoil
analysis. Events CC inclusive events where reconstructed three
momentum transfer is between 0.4 to 0.8 GeV.

19 Reconstruction and Machine Learning in Neutrino
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Hadron Multiplicity: Challenge to ML

Hits

Y Final State:
¥ | » KE=7011.4 MeV
1 i Hadron § P »KE=49.7MeV
o § p »KE=312.4 MeV
| $ p » KE=231.2 MeV
:
: ] view
X view iL 4

< I e e e e e I I I I T J
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Module number

For traditional tracking algorithms, threshold 1s 100 MeV when the hadron 1s
going forward

One proton <50 MeV, another proton 1s
at high angle, tracker can not recognize it, can ML?
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Implementmg the transfer learmng

Transfer learnrng 1s a maehrne 1earn1ng method Where a model developed for a |
i task (e.g., vertex finding ) is reused as the starting point for a model on a '
sccond task (e.g., hadron multipieity)

« MENNDL based vertex finding model 1s trained over large
Monte Carlo Sample. This model 1s reused as starting point for
a model of hadron multiplicity

* Freeze the weights of the convolutional layers and run upto
few epochs for hadron multiplicity

* Next unfreeze the weights of the convolutional layers and run
up to another few epochs: fine tuning

21 Reconstruction and Machine Learning in Neutrino
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Validation accuracy

‘ValidationAccuracy comparison

—— Wi.ith Transfer Learning
—— Wi.ithout Transfer Learning
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Row Normalized Confusion Matrix Row Normalized Confusion Matrix
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Column Normalized Confusion Matrix
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Event classified by track-based and ML-based method

2
I
100
Final State:
o U p KE=4967.5 MeV
1 1 D » KE=705.9 MeV
510 15 m  » KE=93.1 MeV

n » KE=2.0 MeV

1 1 1 1 X View ]
% 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82 84

Module number

Track based method recognlzed the hadron w1th 705 MeV but can not find the
| hadron with kinetic energy 93 MeV
ML -based method has been able to find both the hadrons

Reconstruction and Machine Learning in Neutrino
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Comparisons among Truth, Track-based and
ML-based

Threshold 100 MeV Threshold 50 MeV

ML without| ML with
Truth Value transfer transfer
learning learning

Number of
hadrons

899

1364 88 1080 794

2% Reconstruction and Machine Learning in Neutrino
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Event distribution for different hadron
multiplicity

04<g3<0.8 MINERVA Preliminary

(\J Truth value
ﬂj ML Classification

1600 B 0 Hadrons
B 1 Hadron

1400 B 2 Hadrons

1200 | >=3 Hadrons
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Measured Calorimetric Energy (GeV)
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Event distribution for different hadron
multiplicity

04<9g3<0.8 MINERVA Preliminary

(\J Truth value
ﬂj ML Classification
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Neutral pion reconstruction using
Semantic Segmentation via U-Resnet
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Semantic segmentation

|__we deal our vertex fining problem by performing image classification.

X view

classifying what appears in an image into
one out of a set of predefined classes

10
09
oa
0.7
05
0.5
0.4
0.3
0.2
o1
0.0

classifying the region of interaction vertex

strip
scaled energy

. Semantic segmentation is understanding an image at pixel level i.e, we |
- want to assign each pixel in the image an object class '

X view

image semantic segmentation is the task of
classifying each pixel in an image into .
one out of a set of predefined classes
classify each pixel - is this pixel, ’ i
belongs to muon/proton/pion....7? o

Reconstruction and Machine Learning in Neutrino
Experiments, Desy Hamburg, 17th September, 2019
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Data format and algorlthm

f Image processmg 1S done by LarCV paekage(htms //,Qlthub eom/DeeDLearnPhV51es/larcv2 Qlt)

developed by Kazuhlro Terao et al o

* An analysis framework developed for processing LArTPC image data this software 1s
generic use by supporting C++ data structures, 1O interface, and data processing

machinery.
* It 1s used to directly manipulate the image data with or without OpenCV.

* It plays a key role to interface with open source deep learning softwares including
caffe by Berkeley Lab. and TensorFlow by Google.

 ROOT format- easy to handle, can do other things like crop images , resize images etc

U I’esnet(https // glthub eom/DeepLearnthsws/u resnet. glt) 1S used tO 1mp1ement the ;

semantle segmentatlon algonthm

« Hybrid of the U-Net(arxiv: 1505.04597) and residual network (arxiv: 1512.0338s5,
arxiv:1603.05027)

31 Reconstruction and Machine Learning in Neutrino
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https://github.com/DeepLearnPhysics/larcv2.git
https://github.com/DeepLearnPhysics/u-resnet.git

U-Resnet

classification
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True vs predicted event
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Predicted class

Anushree Ghosh, UTFSM, Chile

Confusion matrix

row normalized
MINERVA work in progress

4.8e-08 1.3e-08 2.6e-08

1 2 3
True class
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Confusion matrix

column normalized

Predicted class
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MINERVA work in progress

Diagonal value
from column
normalized matrix

1.3e-05 1.5e-05

1 (EM-like)

2(Neutron)
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1 2 3
True class
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Invariant mass distribution of neutral pion

. x10°
e L
qC, 71— MINERVA Work In Progress
> |
w
< g POT-Normalized
51 R
- f |
- I 5
41— ;
- ; i
’ ]
3 {

0 100 200

300

400

vy
v+X

1

X+y
X+X

500

vy Invariant Mass(MeV)

Traditional reconstruction

Anushree Ghosh, UTFSM, Chile

600

700

36

N (Events)

x10°

B )
7+— MINERVA Work In Progress L_J'Y'FY
61— POT-Normalized
5

: 1
41— e |
.
3_— n
.
ol
1
i
11— g
Yo

O P s o] x_nm

0 100 200 300 400 500 600 700
vy Invariant Mass(MeV)

With ML prediction (Only x view) ‘

Reconstruction and Machine Learning in Neutrino
Experiments, Desy Hamburg, 17th September, 2019



Summary

M We see significant improvement using ML based reconstruction over track-based
method for vertex reconstruction at nuclear target region.

M We simulated with different FSI behavior and we saw the cross domain
performance validation. However, by using DANN, to restrict the feature extraction
only to features in both domains, we can train a domain-invariant classifier

M We compared MENNDL-based models with artisanal. It shows that human time
can be saved by utilizing the computation time

M We have been applying ML-based classification for counting the number of
hadrons and we tested the transfer learning technique. We are testing different loss
functions (such as bilinear loss) and Resnet in order to improve the performance.

M Semantic segmentation approach has been successfully applied to reconstruct the
neutral pion at the final state using prediction for one view. Next is to apply the
prediction from all three views.

MWe are planning to apply DANN in hadron multiplicity and neutral pion
reconstruction problem
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From MINERVA Collaboration:

Thank you!

=3



Backup slides
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Introduction

Outer detector (OD):
composed of a heavy steel frame, interspersed with
scintillator bars, which serves both for calorimetry

and as a support structure for the detector

A

Inner Detector (ID):
Plastic scintillator strips create light

from moving charged particles
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Signal purity has been improved
by the factor of 2-3 using ML
technique compared to track
based approach
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Effect of Sample size on the performance of
DANN
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Effect of Sample size on the performance of
DANN
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Effect of Sample size on the performance of
DANN
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Effect of Sample size on the performance of
DANN
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Infer the accuracy of CNN from its structure

proposed a systematic methods to uniformly extract architectural parameters from different
architecture of CNNs

demonstrated the predictive nature of those architectural attributes of CNNs

in two specific problems—MINERVA Vertex Finding and MINERvVA Hadron Multiplicity Counting—through
building classification models, which can predict whether a CNN’s architecture is likely to perform better
than a certain accuracy threshold or not
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Plot for approval
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DIS Sample - Iron of Target 5
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U' re SN et(https://github.com/DeepLearnPhysics/u-resnet.git)
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Application: Neutral pion reconstruction

To test application, we can consider the signal: p + 1 0 + X (includes
mesons).

In the x view, Remove clusters from consideration where the
the energy weighted pixel probability of being em-like 1s
under some threshold.

Clusters are then used in blob formation via angle scan
routine.
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Step 1: Make images

We already had HDF5 1mage format. I converted them into LarCV

Start with three class image : , non-EM , and background(zero label)
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Data image:hit (X-view) Data image :time PID 1mage(X-view)
(X-view)
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Step 1: Make images
We already had HDF5 image format. | converted them into LarCV

Start with three class image : , non-EM , and background(zero label)
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True vs predicted event

,,, Model :layered model, 4class; Class 0-zero label,
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Train and validate the network

Trained the network for x view separately.

Training sample: Monte Carlo events

-Full detector configuration, only CC events

-1M 1mages for training

-train over only X view

-Also, we layered three views and train over them all together
- Used both Hit and time informations (two channels)

Loss 1s calculated using softmax with logits to calculate the loss
per pixel. Finally the loss 1s summed over all the pixel

Ran upto 15 epoch

4 classes (non zero training accuracy 93%)

Tested on melF MC sample. For creating the confusion matrices, we use 50K
events.

57 Reconstruction and Machine Learning in Neutrino
Anushree Ghosh, UTFSM, Chile Experiments, Desy Hamburg, 17th September, 2019



