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Introduction
I “3D” neutrino detectors normally only provide 2D projections
I Usually reconstruct 2D objects and combine into 3D
I I am presenting a different approach to go directly to 3D hits

I Problem statement
I Prior art
I Regularization
I SpacePointSolver & WireCell
I Future directions

“Three-dimensional Imaging for Large LArTPCs” arXiv:1803.04650
lar.bnl.gov/wire-cell
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https://arxiv.org/abs/1803.04850
http://lar.bnl.gov/wire-cell


Problem statement

I Given observed charges qi find deposits in 3D space pj such that

sites∑
j

Tijpj = qi

where Tij ∈ 0,1 encodes which 3D points could cause which hits
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Problem statement

I Underconstrained problem – 3N measurements for N3 unknowns
I A form of unfolding problem – need some kind of regularization
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Prior art

I “Compressed sensing” – recover original image from surprisingly
little information if you have a model, e.g. the image is sparse

I Mathematical proofs mostly use a random transfer matrix
I We have a lot of structure/correlations (e.g. isochronous tracks)

Candes, Romberg, and Tao, “Stable Signal Recovery from Incomplete and
Inaccurate Measurements” arXiv:math/0503066
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https://arxiv.org/abs/math/0503066


Example – DUNE FD νµ sim
Collection view hits All coincidences – orthogonal view

SpacePointSolver
distributes collection
wire charge over
10µs/5mm “triplets”

WireCell distributes
charge among 3D “cells”

Truth – orthogonal view
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Regularization

x

y

“Minimize ` with w1+w2=k”

L0 =
∑

i

{
0 pi = 0
1 pi > 0

L1 =
∑

i

|pi | L2 =
∑

i

p2
i

I Want simplest charge distribution that explains the observations
I Regularization concept familiar from unfolding problems
I Here “simplest” = “sparsest” i.e. minimize L0 – NP-hard problem
I But solution minimizing L1 norm will also be sparse in general
I Space not fully differentiable, but it is single-minimum’d
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Regularization in WireCell
Truth Intersections L1

I Addition of L1 regularization greatly improves reconstruction
I Previous approach was a brute-force search to minimize L0

C. Backhouse (UCL) 8 / 12



SpacePointSolver built-in L1
All coincidences

minimize χ2 =
iwires∑

i

qi −
sites∑

j

Tijpj

2

subject to pj ≥ 0 for all j

and
sites∑

j

Ujkpj = Qk for all k

I SpacePointSolver distributes collection wire charge over relevant
triplets

I Total charge
∑

pi ≡
∑

Qk constant by construction
I So a form of L1 regularization is built into the foundations
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SpacePointSolver cross-term
Minimize χ2

χ2 =
iwires∑

i

qi −
sites∑

j

Tijpj

2

−
sites∑

ij

Vijpipj

I Knows the solution should be sparse but it should also be compact
I Room for one more term in the χ2 while preserving minimizability

I Lower χ2 for a solution that places the p’s closer together

I Form of V is ad-hoc. Used Vij = λ exp
(
− |~r1−~r2|

2cm

)
I λ controls regularization strength. Too strong and solution

degrades again
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SpacePointSolver cross-term
Minimize χ2 inc. cross-term
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SpacePointSolver cross-term
Over-regularized
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Application

I SpacePointSolver and WireCell are available within larsoft
I Compatible with geometries other than DUNE (including two-view

geometries such as DUNE-DP, Lariat, Argoneut)
I Intended as the first step of a natively-3D reconstruction chain
I SpacePointSolver already finding use for ProtoDUNE

wire-wrapping disambiguation (>99% correct disambiguation)
C. Backhouse (UCL) 11 / 12



Future directions
I Using wire hits can be inconvenient e.g. with

steep tracks
I Look into unfolding 2D waveforms directly to

a 3D charge cloud?

I Definition of the interaction term is ad-hoc
and could be tuned

I Can an optimum function somehow be
defined from the data? Covariance of truth
hit distributions??

I Compressed Sensing ideas are powerful
I Where else can we apply them?
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Thanks!


