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Introduction

» “3D” neutrino detectors normally only provide 2D projections
» Usually reconstruct 2D objects and combine into 3D
» | am presenting a different approach to go directly to 3D hits
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Future directions

“Three-dimensional Imaging for Large LArTPCs” arXiv:1803.04650
lar.bnl.gov/wire-cell
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Problem statement

» Underconstrained problem — 3N measurements for N® unknowns
» A form of unfolding problem — need some kind of regularization
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Prior art

available portion of the spectrum Back-projection estimate Estimate after convergence
(11 radial lines) (esact reconstruction)

» “Compressed sensing” — recover original image from surprisingly
little information if you have a model, e.g. the image is sparse

» Mathematical proofs mostly use a random transfer matrix
» We have a lot of structure/correlations (e.g. isochronous tracks)

Candes, Romberg, and Tao, “Stable Signal Recovery from Incomplete and
Inaccurate Measurements” arXiv:math/0503066
C. Backhouse (UCL) 5/12


https://arxiv.org/abs/math/0503066
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Regularization

" KJ ~

X “Minimize ¢ with w' +w?=k”

LOZZ{O pi=0 L1:Z\p,-y LZZZ'D’?
. 1
I

1 pi>0 i

» Want simplest charge distribution that explains the observations
» Regularization concept familiar from unfolding problems

» Here “simplest” = “sparsest” i.e. minimize L° — NP-hard problem
» But solution minimizing L' norm will also be sparse in general
» Space not fully differentiable, but it is single-minimum’d
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Regularization in WireCell

Truth Intersections L1

[~ .

» Addition of L' regularization greatly improves reconstruction
» Previous approach was a brute-force search to minimize L°

C. Backhouse (UCL) 8/12



SpacePointSolver built-in L

All coincidences
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minimize X

subject to p; > 0 for all j
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and Y Uypj =
j

Qy for all k

» SpacePointSolver distributes collection wire charge over relevant
triplets

» Total charge > p; =

>~ Qx constant by construction

» So a form of L' regularization is built into the foundations
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SpacePomtSoIver built-in L
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SpacePomtSoIver cross-term

Minimize x?
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» Knows the solution should be sparse but it should also be compact
» Room for one more term in the x2 while preserving minimizability
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S;M)IacePomtSoIver cross-term

nimize x2 inc. cross-term
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Knows the solution should be sparse but it should also be compact
Room for one more term in the x? while preserving minimizability
Lower x? for a solution that places the p’s closer together

Form of V is ad-hoc. Used Vj = Aexp (_\ﬁ—él)
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vV v vvyy

A controls regularization strength. Too strong and solution
degrades again
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SpacePomtSoIver cross-term
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Application

Run: 5145

Event: 26918

Beam momentum: 7GeV

10 Oct 2018 22:57:33 (GMT)

» SpacePointSolver and WireCell are available within larsoft
» Compatible with geometries other than DUNE (including two-view

geometries such as DUNE-DP, Lariat, Argoneut)

» Intended as the first step of a natively-3D reconstruction chain

» SpacePointSolver already finding use for ProtoDUNE

wire-wrapping disambiguation (>99% correct disambiguation)
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Future directions

» Using wire hits can be inconvenient e.g. with
steep tracks

» Look into unfolding 2D waveforms directly to
a 3D charge cloud?

» Definition of the interaction term is ad-hoc
and could be tuned
» Can an optimum function somehow be

defined from the data? Covariance of truth
hit distributions??

v

Compressed Sensing ideas are powerful
» Where else can we apply them?
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