Reconstructing 3D hit information directly from 2D projections

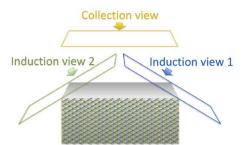
Sep 16, 2019

Chris Backhouse – University College London for the DUNE collaboration

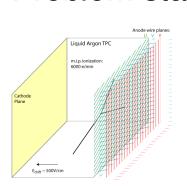
Introduction

- ▶ "3D" neutrino detectors normally only provide 2D projections
- Usually reconstruct 2D objects and combine into 3D
- ▶ I am presenting a different approach to go directly to 3D hits

- Problem statement
- Prior art
- Regularization
- SpacePointSolver & WireCell
- ► Future directions



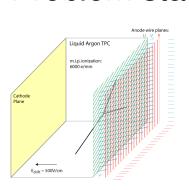
[&]quot;Three-dimensional Imaging for Large LArTPCs" arXiv:1803.04650 lar.bnl.gov/wire-cell



 \blacktriangleright Given observed charges q_i find deposits in 3D space p_i such that

$$\sum_{j}^{ ext{sites}} T_{ij}
ho_j = q_i$$

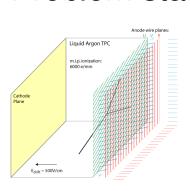
where $T_{ii} \in 0, 1$ encodes which 3D points could cause which hits



 \blacktriangleright Given observed charges q_i find deposits in 3D space p_i such that

$$\sum_{j}^{ ext{sites}} T_{ij}
ho_j = q_i$$

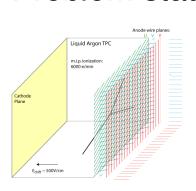
where $T_{ii} \in 0, 1$ encodes which 3D points could cause which hits



 \blacktriangleright Given observed charges q_i find deposits in 3D space p_i such that

$$\sum_{i}^{ ext{sites}} T_{ij} p_j = q_i$$

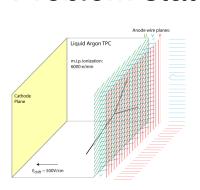
where $T_{ii} \in 0, 1$ encodes which 3D points could cause which hits



 \blacktriangleright Given observed charges q_i find deposits in 3D space p_i such that

$$\sum_{i}^{ ext{sites}} T_{ij} p_j = q_i$$

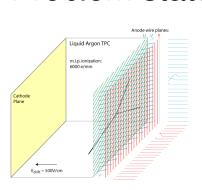
where $T_{ii} \in 0, 1$ encodes which 3D points could cause which hits



 \blacktriangleright Given observed charges q_i find deposits in 3D space p_i such that

$$\sum_{j}^{ ext{sites}} T_{ij}
ho_j = q_i$$

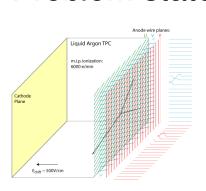
where $T_{ii} \in 0, 1$ encodes which 3D points could cause which hits



 \blacktriangleright Given observed charges q_i find deposits in 3D space p_i such that

$$\sum_{i}^{ ext{sites}} T_{ij} p_j = q_i$$

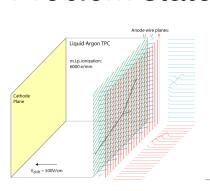
where $T_{ii} \in 0, 1$ encodes which 3D points could cause which hits



 \blacktriangleright Given observed charges q_i find deposits in 3D space p_i such that

$$\sum_{j}^{ ext{sites}} T_{ij}
ho_j = q_i$$

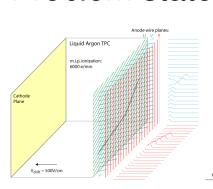
where $T_{ii} \in 0, 1$ encodes which 3D points could cause which hits



▶ Given observed charges q_i find deposits in 3D space p_i such that

$$\sum_{i}^{ ext{sites}} T_{ij} p_j = q_i$$

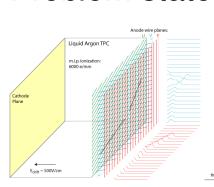
where $T_{ii} \in 0, 1$ encodes which 3D points could cause which hits



▶ Given observed charges q_i find deposits in 3D space p_i such that

$$\sum_{i}^{ ext{sites}} T_{ij} p_j = q_i$$

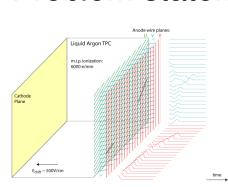
where $T_{ii} \in 0, 1$ encodes which 3D points could cause which hits



▶ Given observed charges q_i find deposits in 3D space p_i such that

$$\sum_{i}^{ ext{sites}} T_{ij} p_j = q_i$$

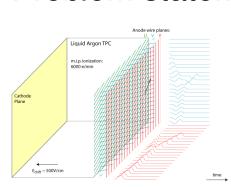
where $T_{ii} \in 0, 1$ encodes which 3D points could cause which hits



▶ Given observed charges q_i find deposits in 3D space p_i such that

$$\sum_{i}^{ ext{sites}} T_{ij} p_j = q_i$$

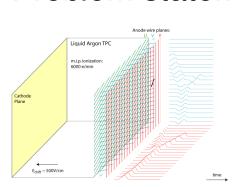
where $T_{ii} \in 0, 1$ encodes which 3D points could cause which hits



▶ Given observed charges q_i find deposits in 3D space p_i such that

$$\sum_{i}^{\text{sites}} T_{ij} p_j = q_i$$

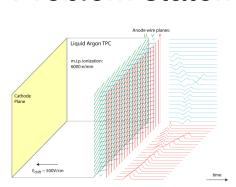
where $T_{ii} \in 0, 1$ encodes which 3D points could cause which hits



▶ Given observed charges q_i find deposits in 3D space p_i such that

$$\sum_{i}^{\text{sites}} T_{ij} p_j = q_i$$

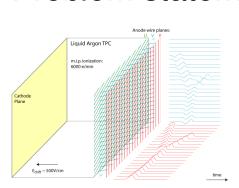
where $T_{ii} \in 0, 1$ encodes which 3D points could cause which hits



▶ Given observed charges q_i find deposits in 3D space p_i such that

$$\sum_{i}^{\text{sites}} T_{ij} p_j = q_i$$

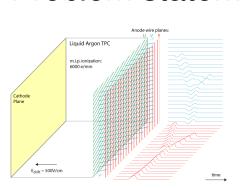
where $T_{ii} \in 0, 1$ encodes which 3D points could cause which hits



▶ Given observed charges q_i find deposits in 3D space p_i such that

$$\sum_{j}^{\text{sites}} T_{ij} p_j = q_i$$

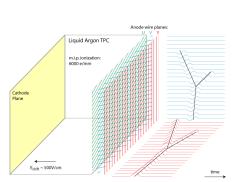
where $T_{ii} \in 0, 1$ encodes which 3D points could cause which hits



▶ Given observed charges q_i find deposits in 3D space p_i such that

$$\sum_{i}^{\text{sites}} T_{ij} p_j = q_i$$

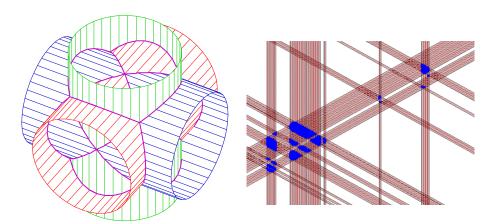
where $T_{ii} \in 0, 1$ encodes which 3D points could cause which hits



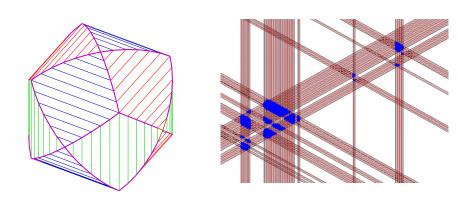
▶ Given observed charges q_i find deposits in 3D space p_i such that

$$\sum_{j}^{ ext{sites}} T_{ij}
ho_j = q_i$$

where $T_{ii} \in 0, 1$ encodes which 3D points could cause which hits

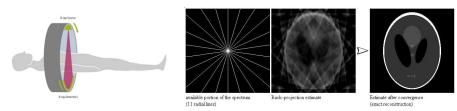


- ▶ Underconstrained problem 3N measurements for N^3 unknowns
- ► A form of unfolding problem need some kind of regularization



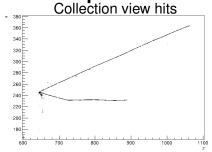
- ► Underconstrained problem 3N measurements for N³ unknowns
- ► A form of unfolding problem need some kind of regularization

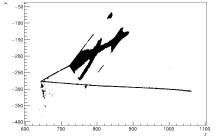
Prior art



- ► "Compressed sensing" recover original image from surprisingly little information if you have a model, *e.g.* the image is sparse
- ► Mathematical proofs mostly use a random transfer matrix
- ▶ We have a lot of structure/correlations (*e.g.* isochronous tracks)

Candes, Romberg, and Tao, "Stable Signal Recovery from Incomplete and Inaccurate Measurements" arXiv:math/0503066

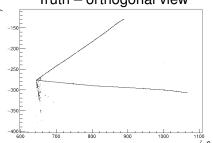


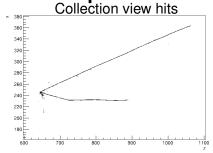


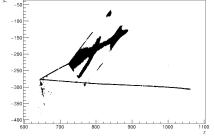
SpacePointSolver distributes collection wire charge over 10μs/5mm "triplets"

WireCell distributes charge among 3D "cells"

Truth – orthogonal view



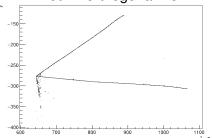




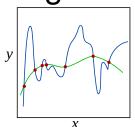
SpacePointSolver distributes collection wire charge over 10μs/5mm "triplets"

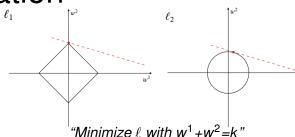
WireCell distributes charge among 3D "cells"

Truth – orthogonal view



Regularization





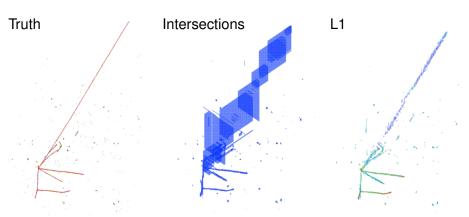
$$L^0 = \sum_{i} \begin{cases} 0 & p_i = 0 \\ 1 & p_i > 0 \end{cases}$$

$$L^1 = \sum_i |p_i|$$

$$L^2 = \sum_i p_i^2$$

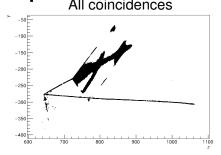
- ► Want simplest charge distribution that explains the observations
- Regularization concept familiar from unfolding problems
- ► Here "simplest" = "sparsest" i.e. minimize $\frac{L^0}{L^0}$ NP-hard problem
- ▶ But solution minimizing L¹ norm will also be sparse in general
- Space not fully differentiable, but it is single-minimum'd

Regularization in WireCell



- ► Addition of L¹ regularization greatly improves reconstruction
- Previous approach was a brute-force search to minimize L⁰

SpacePointSolver built-in L¹



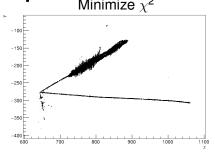
minimize
$$\chi^2 = \sum_{i}^{\text{iwires}} \left(q_i - \sum_{j}^{\text{sites}} T_{ij} p_j \right)^2$$

subject to $p_i \ge 0$ for all j

and
$$\sum_{j}^{\text{sites}} U_{jk} p_j = Q_k$$
 for all k

- SpacePointSolver distributes collection wire charge over relevant triplets
- ▶ Total charge $\sum p_i \equiv \sum Q_k$ constant by construction
- ightharpoonup So a form of L^1 regularization is built into the foundations

SpacePointSolver built-in L^1



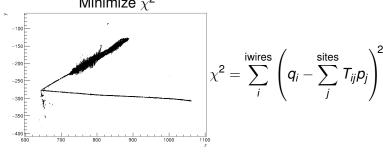
minimize
$$\chi^2 = \sum_{i}^{\text{iwires}} \left(q_i - \sum_{j}^{\text{sites}} T_{ij} p_j \right)^2$$

subject to $p_j \ge 0$ for all j

and
$$\sum_{i}^{\text{sites}} U_{jk} p_j = Q_k$$
 for all k

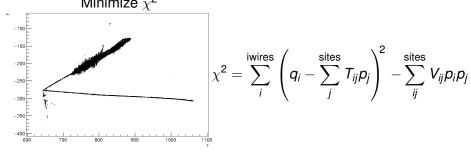
- SpacePointSolver distributes collection wire charge over relevant triplets
- ▶ Total charge $\sum p_i \equiv \sum Q_k$ constant by construction
- ightharpoonup So a form of L^1 regularization is built into the foundations

${\bf Space Point Solver\ cross-term}$



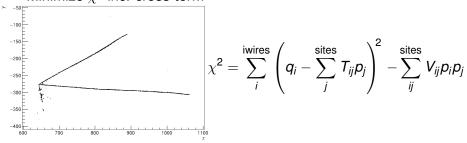
- ► Knows the solution should be *sparse* but it should also be *compact*
- ▶ Room for one more term in the χ^2 while preserving minimizability

${\bf Space Point Solver\ cross-term}$



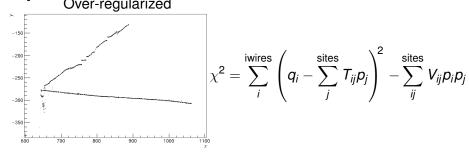
- Knows the solution should be sparse but it should also be compact
- ► Room for one more term in the χ^2 while preserving minimizability

▶ Lower χ^2 for a solution that places the p's closer together



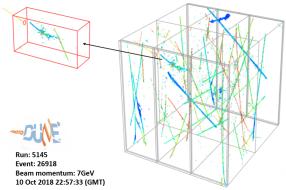
- ► Knows the solution should be *sparse* but it should also be *compact*
- Room for one more term in the χ^2 while preserving minimizability
- ▶ Lower χ^2 for a solution that places the p's closer together
- ▶ Form of V is ad-hoc. Used $V_{ij} = \lambda \exp\left(-\frac{|\vec{r}_1 \vec{r}_2|}{2\mathsf{cm}}\right)$
- \blacktriangleright λ controls regularization strength. Too strong and solution degrades again

SpacePointSolver cross-term Over-regularized



- ► Knows the solution should be *sparse* but it should also be *compact*
- ▶ Room for one more term in the χ^2 while preserving minimizability
- ▶ Lower χ^2 for a solution that places the p's closer together
- Form of V is ad-hoc. Used $V_{ij} = \lambda \exp\left(-\frac{|\vec{r}_1 \vec{r}_2|}{2\text{cm}}\right)$
- $ightharpoonup \lambda$ controls regularization strength. Too strong and solution degrades again

Application



- SpacePointSolver and WireCell are available within larsoft
- Compatible with geometries other than DUNE (including two-view geometries such as DUNE-DP, Lariat, Argoneut)
- ► Intended as the first step of a natively-3D reconstruction chain
- SpacePointSolver already finding use for ProtoDUNE wire-wrapping disambiguation (>99% correct disambiguation)
 C. Backhouse (UCL)

11/12

Future directions

- ► Using wire hits can be inconvenient *e.g.* with steep tracks
- ► Look into unfolding 2D waveforms directly to a 3D charge cloud?
- Definition of the interaction term is ad-hoc and could be tuned
- ► Can an optimum function somehow be defined from the data? Covariance of truth hit distributions??
- ► Compressed Sensing ideas are powerful
- ► Where else can we apply them?

