Distributed Imaging for Liquid Scintillator Detectors

Jacopo Dalmasson

Stanford University – Physics Dept.

Stanford University

Outline

- Scintillator detector
- Distributed Imaging
- Detector Simulation
- Event Reconstruction
 - \mathbf{x}^2 method
 - CNN method
- Conclusion

J. Dalmasson et al. (2018), PRD, 97:052006

Liquid Scintillator Detectors

Organic Scintillators

- Good light yield (LY) ~10k/MeV
- Low energy threshold
- Quite fast (<5ns)</p>
- Relative simple and inexpensive technology
- Self-absorption
- Delayed emission (10-100 ns)
- $\blacksquare \text{Isotropic} \rightarrow \text{NO DIRECTIONAL INFORMATION}$

Distributed Imaging

Our Approach

we want to improve the topology reconstruction by trying to retain the incoming direction information of the photons

ray described as (x,y,z,θ,φ) at t=t_D: traditional LS detector

our goal

typical source has high emittance in this phase space

Detector Conceptual Design

 θ , ϕ can be measured by placing converging lens(es) in front of finely segmented photodetectors

Angle/Position Map

how do we do it?

- measure the direction of the photon hitting each lens assembly
- collage from each lens assembly these reconstructed directions and triangulate back

\rightarrow DISTRIBUTED IMAGING

caveat:

- photon occupancy per lens assembly very low (~20 ph/lens)
- lens system focuses parallel rays
- → no real image is produced for a single lens assembly

Distributed Imaging

Detector Simulation

Event Simulation

event simulated with Chroma package* (GPU based)

LY_{e/Y} = 8000 ph/MeV
300nm<
$$\lambda_{em}$$
<320nm
L_{attenuation} >> r_{detector}
n_{scintillator} = 1.5

we simulated two geometries: icosahedron and sphere

- ~100k pixels (multi-anode PMT)
- **30% QE**
- dome-shaped focal array

photodetector

*https://chroma.bitbucket.io/

Detector Optimization

for a given geometry and lens design an optimization on the size of the lens have been performed keeping the total number of pixel fixed to ${\sim}100k$ how the uncertainties on (δ x, δ y,

 δz , $\delta \theta$, $\delta \phi$) are affected?

Distributed Imaging

Event Reconstruction

Event Reconstruction - χ^2 method

we tried to estimate how well we can statistically discriminate e^{-} from γ events at 2MeV (icosahedron geometry), varying the detector configuration. In order to achieve this we had to:

calibrate the detector

produce e⁻ template as reference event

for each different detector configuration:

Main Result – Discrimination Efficiency

Stanford University

Event Reconstruction - CNN method

discrimination between γ/e^-

patterns on each focal array

simulation of well known physics \longrightarrow labeling training data

binary classification problem

- → image grayscale
 - → labeling training data ↓ CNN model

Trade offs:

- no need for a dedicated detector calibration
- no need for a e⁻ template
- data preparation for the network
- hyperparameters optimization

Data Preparation

e⁻ sample image

γ sample image

credits to N.Shenoy

no data normalization carried out

Stanford University

Architecture

Stanford University

Jacopo Dalmasson

Hyperparameter Optimization - Benchmark

- We did a raster scan of the following hyperparameters:
- Epochs/batch size
- Learning rate/decay
- Weight constraints/decay
- -> no random search
- how did this affected the accuracy?

Debugging the Learning Process

Consistent with a learning rate too high? Varying it didn't seem to help a lot (min 10^{-3})

Stanford University

Comparison with the χ^2 method

We decided to use the 200 lenses detector as a benchmark comparison of the two methods

 $|ev_i\rangle = \alpha_i |e^-\rangle + \beta_i |\gamma\rangle$

 α_i^2 = output of the softmax for the i-th event indicating the electroness of each event \uparrow χ^2 m with the e⁻ template

Comparison with the χ^2 method

Stanford University

Jacopo Dalmasson

What Can We Learn from This?

some learning process by the network -> not trivial

results comparable if not better than the ones obtained with the χ^2 method -> possible room for improval

the network seems to be somehow sensitive to the location of the event

what can we say about the architecture?

Current and Next Steps

Open Topics - Points of Improvement

- different lens design
- non-imaging photon recovery
- timing
- machine learning analysis
 - more expertise on CNN
 - study position/angular resolution trade-off with CNN
 - BDT, autoencoders, sparse data,...

software

Conclusion

Conclusion

- distributed imaging is a new technique to reconstruct images from high emittance sources, as the case for scintillation. This technique could enable better background rejection through topology reconstruction in a rare event detector
- to achieve this, we substituted photodetectors with lens assemblies composed by lens(es) in front of a pixelated focal array
- to test the performance on e⁻/γ rejection, we simulated a detector tiled with such lens assemblies and a preliminary lens design. A trade off between position and angular resolution can be observed in the overall performance.
- a ML based approach proves to be suitable in discriminating e⁻/γ. So far, CNN have been studied and proved to be competitive with a more traditional discrimination method based on χ². A tailored architecture and optimization of the network could potentially outperform the latter one

Acknowledgment

thanks to:

- N. Shenoy (working on the network), G. Gratta
- with previous work of:
- S. Steven, J. Bentley, K. Wells, S. Kravitz, A. Jamil, M. Malek, J. Su

for more information:

J. Dalmasson et al. (2018), PRD, 97:052006

jdalmass@stanford.edu

http://grattalab3.stanford.edu/neutrino/index.html