

Image Based Reconstruction and Deep Learning Tools in MicroBooNE

Rui An @ Illinois Institute of Technology 09-18-2019, DESY On behalf of MicroBooNE Collaboration Reconstruction and Machine Learning in Neutrino Experiments

Outline

- MicroBooNE developed an <u>imaged based event reconstruction chain</u>,
 - taking advantage of high resolution image data and computer vision software OpenCV,
 - ★ targeting the exclusive 1*lepton*-1Proton topologies in the low energy excess region,

- Various deep learning networks applied by MicroBooNE,
 - ★ Semantic segmentation network→pixel clustering→SSNet,
 - ★ Classification network \rightarrow particle identification \rightarrow **MPID**,
 - ★ Instance segmentation network→cosmic removal→MaskRCNN.

MicroBooNE LArTPC and Image

U

Y

Preliminary

10 cm

2,400 wire on U,V and 3,456 wires on Y plane.

4.8 ms readout.

Wire ~[wires]x[ticks /6] pixels after applying compression factor on wires and time.

Rui A. @//T P. 3

1/1Proton Event Topology

- Benefits: easier to reject cosmic and non-CCQE in LEE region using topology parameters.
- Visible requirement: proton > 60 MeV and lepton > 35 MeV.
 Rui A. @//T P. 4

Reconstruction Chain

Rui A. @//T P. Cosmic Tagger SSNet Vertex Finding Particle Clustering	A. @ <i>IIT</i> P.	Vertex Finding Particle	ering MPI
---	--------------------	-------------------------	-----------

Semantic Segmentation Network

- The goal is to make pixel-level label decision between track and shower for LArTPC,
- SSNet applies a combination of U-Net and ResNet. Feature maps concatenated between down and up sampling steps,
- Applied the SparseNet, training speed boosted by 5,
- Training sample size: 100,000 events. Test sample size: 20,000 events.

Semantic Segmentation Network

	ICPF	ICPF		
Sample	mean	90%	Shower	Track
Test	1.9	4.6	4.1	2.6
$ u_e$	6.0	13.8	7.6	13.8
$ u_{\mu}$	3.9	4.5	14.2	4.3
1e1p	2.2	5.7	2.8	4.0
$1\mu 1$ p-LE	2.3	2.2	6.2	2.4
1e1p-LE	3.9	11.5	3.8	8.0

* ICPF: Incorrectly Classified Pixel Fraction

- SSNet applied a weighted loss for the LArTPC image sparsity.
- Achieved very low error rates across different samples.

SSNet Output

• SSNet is used to provide vertex seed.

Rui A. @ <i>IIT</i> P. 8	Cosmic Tagger	SSNet	Vertex Finding	Particle Clustering	MPID

1/1P Reconstruction

- We developed two reconstruction chains respectively for,
 - ★ 1µ1Proton (this talk) → using track pixel only images.
 - * 1*e*1Proton (backup slides) \rightarrow using track and shower pixel images.
- Two libraries developed:
 - ★ Liquid Argon Open Computer Vision(*LArOpenCV*),
 - * library for image manipulation, reconstruction and analysis,
 - * interface between LArTPC data and OpenCV,
 - ★ Liquid Argon Computer Vision (*LArCV*),
 - * Bridge LArTPC data and TensorFlow, PyTorch and caffe etc,
 - * Image data format and processing tool.

1µ1P Vertex Candidates Examples

µBooNE

- 1μ 1Proton vertex finding uses track-only images,
- Calculated with OpenCV.

1µ1P Vertex Candidates

- Vertex Candidate #1: contour defect points,
- Vertex Candidate #2: PCA (principal component analysis) crossing points.

Rui A. @//T P.11

1µ1P Angular Metric

1µ1P Vertex Finding Performance

MICROBOONE-NOTE-1042-PUB

- Average efficiency of finding vertex at ~52%.
- Vertex finding resolution for $1\mu 1p \rightarrow less$ than 0.73cm for 68% events.
- Shower vertex finding procedure in backup slides.

Track Particle Clustering

MicroBooNE Simulation Preliminary

- Pixels are clustered based on their distance and angle under the polar coordinate.
- Clusters across three planes are further evaluated by matching pixels over time tick and wire crossing.

Reconstruction Example

Multi-particle PID Network

- Multi-particle PID network is a CNN network application, extended work of the single-particle PID network in <u>arXiv:</u> <u>1611.05531</u>.
- Final layer in a sigmoid function and predicts probabilities of particles in the input image.
- Training image, simulated multiple particles coming from one vertex,
 - ★ avoid bias from neutrino mode,
 - ★ learns more from richer topology information.
- Training sample size: 50,000 events. Test sample size: 40,000 events.
- Better as,
 - * does not require a vertex resolution,
 - ★ does better on Pi0 present events (hard to reconstruct detached shower).

Multi-particle PID Network

<i>e</i> ⁻	γ	μ^{-}	π^{\pm}	P^+
0.1	0.16	0.86	0.38	0.77

<i>e</i> ⁻	γ	μ^-	π^{\pm}	P^+
0.92	0.23	0.35	0.07	0.74

Rui A. @IIT P.17

Multi-particle PID Network

<i>e</i> ⁻	γ	μ^{-}	π^{\pm}	P^+
0.82	0.4	0.15	0.02	0.72

<i>e</i> ⁻	γ	μ^{-}	π^{\pm}	P^+
0.64	0.71	0.12	0.23	0.5

Rui A. @//T P.18

lertex Finding

MPID on Simulation

- Good separation between shower-like and track-like particles,
- Good separation between track-like particles:
 - ★ proton, muon and charged pion.
- Good separation between track-like particles:
 - \star electron and gamma,

Data Simulation Comparison for MPID

• Using 1μ 1P as a sideband study for MPID data MC comparison.

µBooNE

- Good comparison between MicroBooNE's open data and beam simulation + cosmic.
- Syst. error includes applying MPID to same events with various E-field, SCE, channel noise etc.
- In proton score distribution, there is a bump at 1 introduced by neutrino events.

New Reconstruction Chain

Infill Network

- MicroBooNE has large number of dead wires.
- Infill network tries to fill these region with realistic values and improve tracking performance for cosmic muon.
- Training on off-beam data plus dead wire pattern crop.
- U-net + encoder and decoder layers.

Infill Network

- MicroBooNE simulation example. Colored boxes are dead wire regions.
- Pixels are predicted in reasonable region.

Rui A. @ <i>IIT</i> P. 23	Cosmic Tagger	SSNet	Vertex Finding	Particle Clustering	MPID

Infill Network

	U Plane (3 epochs)	V Plane (3 epochs)	Y Plane (4 epochs)
Within 2 ADC	27.24%	20.22%	25.20%
Within 5 ADC	45.33%	37.36%	43.83%
Within 10 ADC	66.82%	56.37%	66.73%
Within 20 ADC	84.47%	75.14%	84.88%
Binary Accuracy	98.40%	99.13%	99.16%

 Predicated pixel ADCs are in a reasonable region and have good efficiencies.

Mask RCNN

- <u>Mask Regional-CNN</u>, a model well known for its good performance on instance segmentation, can provide:
 - \star ROIs for objects,
 - \star Label for the object,
 - \star Pixels for the object.
- Researched with MicroBooNE data in two ways:
 - ★ Mask RCNN-Ancestor: Neutrino vs. Cosmic.
 - ★ Mask RCNN-Particle: Four particle types of e^- -like, μ^- , π^\pm and proton.

Mask RCNN-Ancestor

- Training image size of 512x832 cropped from full event display.
- Training sample has 93% cosmic, 3% neutrino and 4% other.
- Training with ResNet-50 pre-trained weights.

Mask RCNN-Ancestor

- Applied Mask RCNN-Ancestor to MicroBooNE data.
- ~90% particle covered by the proposed clusters of network output.
- Proposed cluster maps strongly to one particle
- Great tool for cosmic pixel tagging.

Mask RCNN-Particle

- DBScan applied to EM shower particles to break large sparse ROIs introduced by EM showers,
- Four particle types in training sample, P, μ^- , π^{\pm} and electron-like shower piece,
- Applied similar pixel weighted as SSNet and a class weighted loss (to unbias the dominating electron labels from DBScan),
- Trained with ResNet-101 weights from COCO, improving the ROI proposal on tracks.

Mask RCNN-Particle

- Mask RCNN-particle shows potential in improving particle clustering, especially for event with detached shower.
- Challenge: the center-based ROI proposal step does not seem ideal for particles coming from one vertex (e.g. compared to corner-based ROI proposal).

Rui A. @//T P. 29	Cosmic Tagger	SSNet	Vertex Finding	Particle Clustering	MPID

Conclusion

- MicroBooNE has developed an imaged-based reconstruction tool for 1µ1Proton and 1e1Proton topologies,
 - $\star\,$ on the way to a LEE result,
 - ★ being applied to higher multiplicity topologies.

- A various of deep learning networks and how to apply the output have been researched by MicroBooNE.
- Good demonstrations of applying deep learning to LArTPC.

Back UP

PMT PreCuts

Precuts applied to reconstructed flash in a short beam spill window(93.75ns) to reject:

- 1. Random single PE noise.
- 2. Single PMT noise.
- 3. Flash from Michel electron prior to beam spill window.

Achieved: Neutrino efficiency: > 96% Backgrounds rejection: >75%

Dedicated cosmic tagging tool developed to tag cosmic objects and find ROI.

- 1. Cosmics down beam direction cross the front and end wires
- 2. Cosmics across top-bottom have unique triplet of wires of three planes.
- 3. Cosmics traversing TPC have the max Δt between the first and last charges on the track.

3D Track Reconstruction

 This reconstruction uses computer vision and clustering tools to find 3D-consistent vertices, and a 3D stochastic best neighbor search.

Rui A. @IIT

P.35

Occlusion Analysis on MPID

MPID

Particle Clustering

3D Track Reconstruction

Rui A. @//T P.36

1e1P Vertex Finding

- Step 1: Find edge points on track,
- Step 2: Keep edge point crossing shower pixels,
- Step 3: Match edge points across planes

Shower Reconstruction

- 1. Mask out track pixels(in gray). Cluster shower pixels by proximity.
- 2. Merge showers based on pixel location(length, angle) in a polar coordinate.
- 3. Reconstructed showers in fit cones.

MPID Training Sample

- Training sample generated with customized event generator,
 - * Create "3D interaction vertex",
 - * One vertex per event, random, uniformly distributed in TPC,
 - * Random particle multiplicity [1, 4] particles per event,
 - * Random, isotropic particle momentum directions,
 - * Random particle types from, *P*, e^- , γ , μ^- and π^{\pm} ,
 - ★ Two particle types mixtures,
 - * 80% events with kinetic energy in [100,1000]MeV and proton in [100,400]MeV,
 - * 20% events with kinetic energy in [30,100]MeV and proton in [40,100]MeV.
- ~45,000 events for training and ~40,000 for validation.
- Why not train with overlay image for training, (1) Cosmic muon would make the network fail for detecting neutrino induced muon (2) Michel & deltas would make the MPID fail for detecting neutrino-induced electron.

Rui A. @//T P.39

MPID Data MC Comparison

MPID Data MC Comparison

