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Outline UBoo

* MicroBooNE developed an imaged based event reconstruction chain,

* taking advantage of high resolution image data and computer vision
software OpenCYV,

* targeting the exclusive 1/epton-1Proton topologies in the low energy
excess region,

ESE (GeV)

* Various deep learning networks applied by MicroBooNE,
*  Semantic segmentation network—pixel clustering—SSNet,
* (Classification network— particle identification—MPID,

* Instance segmentation network—cosmic removal—MaskRCNN.
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https://arxiv.org/abs/1805.12028

MicroBooNE LArTPC and Image
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2,400 wire on U,V and 3,456 wires on Y plane.
4.8 ms readout.
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Wire

~[wires]x[ticks /6 ] pixels after applying compression factor on wires and time.
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Wire
Benefits: easier to reject cosmic and non-CCQE in LEE region using
topology parameters.

Visible requirement: proton > 60 MeV and lepton > 35 MeV.
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Reconstruction Chain
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The goal is to make pixel-level label decision between track and shower for LArTPC,

SSNet applies a combination of U-Net and ResNet. Feature maps concatenated
between down and up sampling steps,

Applied the SparseNet, training speed boosted by 5,

e Training sample size: 100,000 events. Test sample size: 20,000 events.



https://arxiv.org/pdf/1808.07269.pdf

ICPF ICPF
Sample mean 90% Shower Track
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[ 1st Category [l Muon instance * ICPF: Incorrectly Classified Pixel Fraction
[ ] 2nd Category [l Proton instance

[] 3rd Category [] Proton instance
B Electron instance

e SSNet applied a weighted loss for the LArTPC image sparsity.

* Achieved very low error rates across different samples.
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SSNet Output uBoo
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1/1P Reconstruction uBoo

e We developed two reconstruction chains respectively for,
* 1p1Proton (this talk) = using track pixel only images.

* 1e1Proton (backup slides) — using track and shower pixel images.

e Two libraries developed:

* Ligquid Argon Open Computer Vision(LArOpenCV),

* library for image manipulation, reconstruction and analysis,
* interface between LArTPC data and OpenCyV,

* Ligquid Argon Computer Vision (LArCV),
* Bridge LArTPC data and TensorFlow, PyTorch and caffe etc,

* Image data format and processing tool.
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https://github.com/NevisUB/LArOpenCV
https://github.com/LArbys/LArCV

1141P Vertex Candidates Examples uBoo

MicroBooNE Simulation Preliminary MicroBooNE Simulation Preliminary

Convex Hull

{ Defect Line

 1u1Proton vertex finding uses track-only images,

e (Calculated with OpenCV.




1u1P Vertex Candidates nBoo

MicroBooNE Simulation Preliminary MicroBooNE Simulation Preliminary

i Contour Defect

* \ertex Candidate #1: contour defect points,

* Vertex Candidate #2: PCA (principal component analysis) crossing points.
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¢: angle of PCA crossing points.
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1u1P Vertex Finding Performance

MICROBOONE-NOTE-1042-PUB
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* Average efficiency of finding vertex at ~52%.

e Vertex finding resolution for 1u1p — less than 0.73cm for 68% events.

e Shower vertex finding procedure in backup slides.
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https://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1042-PUB.pdf

MicroBooNE Simulation Preliminary
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Pixels are clustered based
on their distance and angle
under the polar coordinate.

Clusters across three
planes are further
evaluated by matching
pixels over time tick and
wire crossing.
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Reconstruction Example uBoo
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Multi-particle PID Network uBooNP

e Multi-particle PID network is a CNN network application, extended work of the single-particle PID network in arXiv:
1611.05531.

Final layer in a sigmoid function and predicts probabilities of particles in the input image.

Training image, simulated multiple particles coming from one vertex,
* avoid bias from neutrino mode,

* |earns more from richer topology information.

Training sample size: 50,000 events. Test sample size: 40,000 events.

Better as,
* does not require a vertex resolution,

* does better on Pi0 present events (hard to reconstruct detached shower).
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https://arxiv.org/abs/1611.05531
https://arxiv.org/abs/1611.05531

Multi-particle PID Network uBoo

MicroBooNE Simulation Preliminary MicroBooNE Simulation Preliminary
1u1Proton Example 1e1Proton Example

e[ r |l w || Pt e[ r|lw || Pt




500

400

300

200

100

Multi-particle PID Network

MicroBooNE Simulation Preliminary
One Shower Example

I

100

200

300

400

0.4

500

500

400

300

200

100

uBoo

MicroBooNE Simulation Preliminary
Two EM Showers Example

100 200 300 400
e | 7 u | #F| pt
064107110121 0.231 0.5

500




MPID on Simulation 1Boo
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e Good separation between shower-like and track-like particles,
e Good separation between track-like particles:

* proton, muon and charged pion.

e Good separation between track-like particles:

* electron and gamma,
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// Data Simulation Comparison for MPID

Using 1x#1P as a sideband study for
MPID data MC comparison.

Good comparison between
MicroBooNE’s open data and beam
simulation + cosmic.

Syst. error includes applying MPID
to same events with various E-field,
SCE, channel noise etc.

In proton score distribution, there is
a bump at 1 introduced by neutrino
events.



https://microboone.fnal.gov/wp-content/uploads/MICROBOONE-NOTE-1039-PUB.pdf
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Infill Network

MicroBooNE
V Plane
In Progress

MicroBooNE

Y Plane
In Progress

e MicroBooNE has large number of dead wires.

* Infill network tries to fill these region with realistic values and
Improve tracking performance for cosmic muon.

* Training on off-beam data plus dead wire pattern crop.

* U-net + encoder and decoder layers.
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Infill Network

Prediction

* MicroBooNE simulation example. Colored boxes are dead
wire regions.

* Pixels are predicted in reasonable region.
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Y Plane Predicted vs. True ADC Value
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MicroBooNE Simulation
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True ADC value

U Plane V Plane Y Plane
(3 epochs) | (3 epochs) | (4 epochs)
Within 2 ADC 27.24% 20.22% 25.20%
Within 5 ADC 45.33% 37.36% 43.%
Within 10 ADC 66.82% | 56.37% [ 66.73% |
Within 20 ADC 84.47% 75.14% 84.88%
Binary Accuracy 98.40% 99.13% 99.16%

 Predicated pixel ADCs are in a reasonable region and

have good efficiencies.




Mask RCNN

e Mask Regional-CNN, a model well known for its good performance on instance
segmentation, can provide:

* ROls for objects,
* Label for the object,
* Pixels for the object.

e Researched with MicroBooNE data in two ways:

* Mask RCNN-Ancestor: Neutrino vs. Cosmic.

* Mask RCNN-Particle:
Four particle types of ¢ -like, i, *
and proton.
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https://arxiv.org/abs/1703.06870

Mask RCNN-Ancestor uBoo

ADC Image Training Image

MichBooNE MicrI)BooNE |

Simulation / Simulation
In Progress In Progress
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pnBooNE

* Training image size of 512x832 cropped from full event display.

* Training sample has 93% cosmic, 3% neutrino and 4% other.

* Training with ResNet-50 pre-trained weights.
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Mask RCNN-Ancestor uBoo

100 cm

Run: 6340 —
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 Applied Mask RCNN-Ancestor to MicroBooNE data.

e ~90% particle covered by the proposed clusters of network output.
* Proposed cluster maps strongly to one particle

e Great tool for cosmic pixel tagging.
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MicroBooNE Simulation In Progress
j Particle Gun

100

MicroBooNE Simulation In Progress
Particle Gun

* DBScan applied to EM shower particles to break large sparse ROls introduced by
EM showers,

e Four particle types in training sample, P, u~, 7* and electron-like shower piece,

* Applied similar pixel weighted as SSNet and a class weighted loss (to unbias the
dominating electron labels from DBScan),

Trained with ResNet-101 weights from COCO, improving the ROI proposal on tracks.
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Mask RCNN-Particle

uBooNP
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MicroBooNE Simulation In Progress MicroBooNE Simulation In Progress

U, interaction example NC event example

e Mask RCNN-particle shows potential in improving particle clustering,
especially for event with detached shower.

e Challenge: the center-based ROI proposal step does not seem ideal for
particles coming from one vertex (e.g. compared to corner-based ROI
proposal).
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Conclusion

* MicroBooNE has developed an imaged-based

reconstruction tool for 1u1Proton and 1e1Proton
topologies,

* on the way to a LEE result,

* being applied to higher multiplicity topologies.

* A various of deep learning networks and how to apply the
output have been researched by MicroBooNE.

 Good demonstrations of applying deep learning to
LArTPC.
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Back UP
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PMT PreCuts
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Precuts applied to reconstructed flash in a short beam spill
window(93.75ns) to reject:
1. Random single PE noise.

2. Single PMT noise.
3. Flash from Michel electron prior to beam spill window.

Achieved:
Neutrino etfficiency: > 96%
Backgrounds rejection: >75%

Rui A. @ P.32



Dedicated cosmic tagging tool developed to tag cosmic objects and

find ROI.
1. Cosmics down beam direction cross the front and end wires

2. Cosmics across top-bottom have unique triplet of wires of three

planes.
3. Cosmics traversing TPC have the max At between the first and last

charges on the track.

Rui A. @ P33



W 3D Track Reconstruction
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* This reconstruction uses computer vision and clustering
tools to find 3D-consistent vertices, and a 3D stochastic
best neighbor search.
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1¢1P Vertex Finding uBoo

e Step 1: Find edge points

O\O on track,
Track +
Track edge Shower edge

o Step 2: Keep edge point
crossing shower pixels,

Step 3

3D Bdges e Step 3: Match edge points
across planes



W Shower Reconstruction
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1. Mask out track pixels(in gray). Cluster shower pixels by proximity.

2. Merge showers based on pixel location(length, angle) in a polar
coordinate.

3. Reconstructed showers in fit cones.
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MPID Training Sample

e Training sample generated with customized event generator,
* Create “3D interaction vertex”,
* One vertex per event, random, uniformly distributed in TPC,
* Random particle multiplicity [1, 4] particles per event,

* Random, isotropic particle momentum directions,
* Random particle types from, P, e”, v, 4~ and n™%,
* Two particle types mixtures,

* 80% events with kinetic energy in [100,1000]MeV and proton in
[100,400]MeV,

* 20% events with kinetic energy in [30,100]MeV and proton in [40,100]MeV.
e ~45,000 events for training and ~40,000 for validation.

 Why not train with overlay image for training, (1) Cosmic muon would make the
network fail for detecting neutrino induced muon (2) Michel & deltas would make the
MPID fail for detecting neutrino-induced electron.

Rui A. @ P.39



MPID Data MC Comparison 1Boo
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MPID Data MC Comparison 1Boo
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