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! Introduction to the IceCube detector
! Very Short Introduction to Unfolding
! Atmospheric Neutrino Spectra
! High Energy Starting Events (HESE)
! Tau Neutrino Detection with Machine Learning
! Neural Networks for Reconstruction

What to expect from this talk
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IceCube and DeepCore

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments
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Event Signatures in IceCube

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments

Track like events:

! !" - CC interactions
! Interaction may happen outside 

instrumented volume
! Good angular resolution≈ 1°
! Poor energy resolution

Cascade like events:

! !& - CC and all flavour NC interactions
! Interaction inside instrumented volume
! Poor angular resolution≈ 15°
! Good energy resolution
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The Fundamental Unit of IceCube: The DOM

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments

! Downward facing 10“ PMT 
(Hammamatsu R7081-02), 25% Peak 
QE

! High Voltage Supply
! Electronics
! Flasher LEDs
! Higher QE (34%) for DeepCore DOMs 

(Hammamatsu R7081MOD)
! Very few DOM failures (mostly during

deployment)
! Slightly larger fraction of DOMs with

issues (mostly non-standard Local
Coincidence)
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Deconvolution in a Nutshell

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments
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! Production of charged lepton in 
neutrino interaction is governed by
stochastical processes

! Additional smearing, due to several
detector effects

Mathematically: Fredholm integral 
equation of the first kind:
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Deconvolution in a Nutshell

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments
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! Production of charged lepton in 
neutrino interaction is governed by
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! Additional smearing, due to several
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Mathematically: Fredholm integral 
equation of the first kind:

In addition: Background needs to be

reduced by three orders of

magnitude!
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Atmospheric Neutrinos

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments
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Atmospheric Neutrinos

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments
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General Background Rejection Strategy

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments

Variable Selection Classifier Training
Cut on Classifier

Output

Picture: CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.p
hp?curid=14260
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General Background Rejection Strategy

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments

Variable Selection Classifier Training
Cut on Classifier

Output

Picture: CC BY-SA 3.0, 
https://commons.wikimedia.org/w/index.p
hp?curid=14260

~1200 Features
Signal to Background Ratio: 10-3

Trade-off between signal
efficiency and background

rejection.
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General Background Rejection Strategy

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments

Variable Selection Classifier Training
Cut on Classifier

Output

Purity generally above 99%.

Even more important: Make
sure there are no muons in 
bins with small statistics.
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Feature Selection with mRMR

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments

Event Selection – Feature Selection

1219
Initially

855
constant%&%useless

323
Correlation%cut

311
Data/MC%Clf

60
mRMR

1129
blacklisted

AUC

AUC

AUC

Feature/Observable selection to find a low dimensional representation for the 
classification task without losing information

Data/MC Classification

7

M. Börner, PhD thesis (2018)

! Select features according to relevance and
redundancy

! Feature set is built by iteratively adding
features that fulfill the following criterion

max
$% & '()*+,

- ./, 1 − 1
4 − 1 5

$6 & )*+,

-(.8, ./)

Ding, C., & Peng, H., Journal of bioinformatics and computational biology, 3(02), 185-205. (2005)

Peng, H.C., Long, F., and Ding, C., IEEE Transactions on Pattern Analysis and Machine Intelligence, 
Vol. 27, No. 8, pp. 1226–1238, 2005.
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Handling Data/MC Mismatches

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments

Event Selection – Feature Selection
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7

Conclusion & Outlook

AUC

AUC

AUC

Valuable tool to identify and 
minimize data/MC 
disagreement

Feature selection provides 
major improvement of the 
achievable event rate

Selection can be easily adjusted 
to provide even higher event 
rate, when a lower purity is 
acceptable

Will be extended as soon as possible to pass2 (IC86%I +) (Corsika simulations 
missing)
! At least 700 000 neutrino events in the new sample (7 years)

Interested? Contact: mathis.boerner@icecube.wisc.edu or tobias.hoinka@icecube.wisc.edu

15

M. Börner, PhD thesis (2018)

Train classifier to distinguish data
and simulation.
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Classifier Training an Output

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments
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Fig. 3 Same as Fig. 2, zoom into the region where the final selection
cut is considered.

The systematic uncertainty of the event selection was es-
timated by applying the forest to simulated events produced
with different DOM efficiencies and a different modeling of
the ice. For this purpose the efficiencies of all DOMs were
either increased or decreased by 10% from their nominal
values. The modeling of the ice was taken into account by
using the SPICE Mie ice model [21] instead of its predeces-
sor SPICE-1. It was found that the uncertainty of the event
selection due to the ice model is on the order of 5%, whereas
the uncertainty due to the DOM efficiency was estimated to
be 18%. Combining both values one finds that the total sys-
tematic uncertainty of the event selection is 19%.

After verifying the performance of the Random Forest
the final model was trained using 27,000 simulated neutrino
events and 27,000 simulated background events. The events
for each class were drawn at random from the total sample
of available simulated events.

The application of the entire event selection chain on the
full set of IceCube-59 data yielded 27,771 neutrino candi-
dates in 346 days of detector live-time (≈ 80 neutrino candi-
dates per day). The number of remaining atmosphericmuons
was estimated to be 114± 103. The purity of the final neu-
trino event sample was estimated to be (99.59+0.36−0.37)%. No
events with a zenith angle θ < 90◦ were observed in the
sample after the application of the Random Forest.

The number of events surviving the two preselection cuts
on the zenith angle and the LineFit velocity is 15.3× 106.
This corresponds to an estimated background rejection of
91.4% at a signal efficiency of 57.1%.

Comparing the total number of neutrino candidates at fi-
nal level an increase of 62% is observed with respect to [2],
which used IceCube in the 40-string configuration. Taking
into account the larger volume of the detector (59 compared
to 40 strings) and the increased trigger rate, the event selec-
tion method presented in this paper succeeds in an increase
of 8% in the number of neutrino candidates compared to the
event selection presented in [2]. The relative contamination
of the sample with atmospheric muons was found to be of
the same size as in [2].

In the event selection, which is the basis for the subse-
quent unfolding of the νµ energy spectrum, a signal effi-
ciency of 18.2% was achieved at a background rejection of
99.9999%, which corresponds to a reduction of the contam-
ination of the event sample with atmospheric muons by six
orders of magnitude. Both signal efficiency and background
rejection were computed for events with θZenith ≥ 88◦, with
respect to the starting level of the analysis and for neutrino
energies between Eν = 100 GeV and Eν = 1 PeV.

All event selection steps regardingmachine learning, pre-
processing, and validationwere carried out using the RAPID-
MINER [22] machine learning environment.

5 Spectrum Unfolding

As the neutrino energy spectrum cannot be accessed directly,
it needs to be inferred from the reconstructed energy of the
muons. This task is generally referred to as an inverse, or
ill-posed, problem and described by the Fredholm integral
equation of first kind [3]:

g(y) =
∫ a

b
A(y,E) f (E)dE. (7)

For the discrete case this transforms to:

g(y) = A(y,E)f(E), (8)

where f(E) is the sought energy distribution and the mea-
sured energy dependent distribution is given as g(y). The
matrix A(y,E) represents the response matrix of the detec-
tor, which accounts for the physics of neutrino interactions
in or near the detector as well as for the propagation of the
muon.

Several approaches to the solution of inverse problems
exist. The unfolding program TRUEE [3], which is an exten-
sion of the RU N [23] algorithm, was used for unfolding
in this analysis. The stability of the unfolding as well as the
results obtained on experimental data are addressed in the
following.

Aartsen et al., EPJC 75, 116 (2015)

~ 200 neutrino candidates per day
~ 80 neutrino candidates per day

7

(redundancy). The variable with the largest di↵erence
D = K � L is added to the set. The relevance of a
variable with respect to the class variable is determined
by an F-test, whereas the redundancy between two vari-
ables is computed as the absolute value of the Pearson
correlation coe�cient [28]. This way a set of m variables
is built up. A more detailed description of the approach
can be found in [3] and [27].

In this analysis, m = 25 showed a reasonable trade-
o↵ between computational feasibility and retaining in-
formation in the dataset. The selected variables can
be ordered into three di↵erent groups: variables to ap-
proximate the energy, variables containing geometric
properties of the event and variables indicating the
reconstruction quality. Since the performance of the
Random Forest depends on the agreement between data
and simulation, the 25 variables selected by MRMR
were manually inspected for disagreement between data
and Monte Carlo. No such disagreement was found and
the 25 variables were used to train the Random Forest
accordingly.

A Random Forest is an ensemble of decision trees. It
is trained with simulated events to build a model that
can be applied to unclassified events. In the application
the j-th tree assigns a label xi,j = {0, 1} to to the i-
th event. Thus, the final classification is achieved by
averaging the output of all decision trees in the forest:

c

Signal,i =
1

N

trees

N
treesX

j

xi,j . (2)

In machine learning, c
Signal,i is generally referred to as

confidence. To achieve unique trees in the RF, each
decision tree is trained on a subset of simulated events.
At each node only k randomly chosen variables are
used to find the best cut. Before applying the RF to
experimental data, the RF is applied to simulated events
to evaluate the performance of the classification.

After the application of the forest, the vast majority
of the simulated background muons (more than 99.9%)
is found to be scored with a confidence c

Signal,i < 0.8.
Only 26 simulated atmospheric muons were found to
populate the high confidence region (c

Signal

> 0.8). Since
the analysis relies on a high purity sample of neutrino
candidates, the number of remaining background events
needs to be estimated as accurately as possible. The
confidence distribution is the basis for this estimation
and thus has to be obtained as accurately as possible,
as well. Due to the few background events found for
c

Signal,i � 0.8 the accuracy of the confidence distribu-
tion is statistically limited for this very region. This
limitation can be overcome by utilizing a bootstrapping
technique [29].

Fig. 2: Confidence distribution for data and simulation.
Low confidence values indicate background-like events
and high confidence values indicate signal-like events.
A cut in the confidence � 0.92 yields a sample with a
purity of (99.5 ± 0.3)%.

In the bootstrapping, a total of 200 Random Forest
models were trained, each built on a randomly chosen
sample with 50% of the size of the full sample. Using
this technique, each event is scored on average 100 times.
By normalizing the resulting confidence distribution for
each event, the approximation of the confidence distri-
bution is improved by taking the variance of c

Signal,i into
account. Furthermore, it provides statistical uncertain-
ties for the classification. Using this way to control sta-
bility and performance, the parameters of the Random
Forest were set to k = 5 and 200 trees. The forest was
trained using 120,000 simulated signal events and 30,000
simulated background events. The resulting confidence
distributions for simulated events and experimental data
show good compatibility and confirm a stable separation
(see Fig. 2). No signs of overtraining were observed in
the cross validation.

The cut on c

Signal

is a trade-o↵ between background
rejection and signal e�ciency. Due to the steeply falling
spectrum of atmospheric neutrinos and the expected
contribution of astrophysical neutrinos, the cut was
selected to yield a su�cient number of events in the
highest energy bins. For this analysis, a cut at c

Signal

�
0.92 was chosen (see Fig. 2).

This cut yields a total of 66,885 neutrino candidates
in 319.6 days of detector livetime (2.26 · 10�3 neutrino
candidates per second). The number of background
events surviving to the final level of the analysis was
estimated to 330± 200 ((1.10± 0.73) · 10�5 background
events per second), which corresponds to an estimated
purity of (99.5 ± 0.3)%. In total, 21 neutrino candidates

59 strings79 strings

Aartsen et al., EPJC 77,  692 (2017)
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Classifier Training and Output

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments

Event Selection - Classification

Random Forest Classification

9

Conclusion & Outlook

AUC

AUC

AUC

Valuable tool to identify and 
minimize data/MC 
disagreement

Feature selection provides 
major improvement of the 
achievable event rate

Selection can be easily adjusted 
to provide even higher event 
rate, when a lower purity is 
acceptable

Will be extended as soon as possible to pass2 (IC86%I +) (Corsika simulations 
missing)
! At least 700 000 neutrino events in the new sample (7 years)

Interested? Contact: mathis.boerner@icecube.wisc.edu or tobias.hoinka@icecube.wisc.edu

15

~ 300 neutrino candidates per day

Classifier output is energy and
zenith dependent.

Score cut as a function of energy
and zenith. 

86 strings (I,II,III)

M. Börner, PhD thesis (2018)

Preliminary!
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Results on Atmospheric !" Spectra

IceCube Coll., EPJC 77, 
692 (2017)
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High Energy Starting Events

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments

! Select events starting inside the
detector

! Charge threshold of 6000 pe
! Less than 3 of first 250 pe in veto

layer
! ~ 30 TeV deposited inside the

detector
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HESE Energy Spectrum

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments

! Segmented Fit
! Assume E-2 flux and fit 

normalization per bin

! Requires assumption on 
spectral shape

! Challenge: Small number of
events
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Neutrinos from the Northern Hemisphere

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments

arxiv:1908.09918

Llh-Fit to extract spectral
index and normalization of
the different flux
components.

Requires more stringent 
assumptions on the spectral
shape (power law).
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Tau Neutrino Signatures

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments

!-Track (~ 50m/PeV)

"# + % → !' + %(!' → )' + "#
Single Cascade

Double Pulse
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Double Pulse Identification with Machine Learning

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments

Random Forest #1 Random Forest #2

Score Cut: 0.62 (optimized via 
Model Rejection Factor)

Score Cut: 0.2

Purity increases to 97%
2 Events survive

both cuts
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Double Pulse Score: 0.92
p-value: 0.035

Double Pulse Score: 0.565
p-value: 1.0

Double Pulse Identification with Machine Learning
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Double Pulse Identification with Machine Learning

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments
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Reconstruction with Deep Neural Networks

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments
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Reconstruction with Deep Neural Networks

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments

! Stable runtime
! Largely independent of event

characteristics
! Great for running in online analyses

Energy resolution evaluated for
specific event sample (cascades)
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Summary

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments

Event Selection – Feature Selection

1219
Initially

855
constant%&%useless

323
Correlation%cut

311
Data/MC%Clf

60
mRMR

1129
blacklisted

AUC

AUC

AUC

Feature/Observable selection to find a low dimensional representation for the 
classification task without losing information

Data/MC Classification

7
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Backup Slides
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HESE Background Estimation

Main backgrounds are:

! Atmospheric muons
! Estimated in data-driven method
! 10.3 in 7.5 yrs. of data

! Atmospheric neutrinos
! Strongly disfavored by energy and

directional distribution

! 23.2 events in 7.5 yrs. of data

Significance is estimated using total 
event number and event properties.

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments
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7.5 Year Results

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments

Single Power Law Fit:

! = 2.89'(.)(*(.+,

Φ( = 6.45'(.12*+.12 × 10'+6 GeV-1cm-2s-1sr-1



32

Detection Principle

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments

! Neutrino detection via 
charged leptons:

!" + $ ⟶ & + $'

! Interaction in the ice or the
bedrock

! Detection of Cherenkov light 
by Digital Optical Modules 
(DOMs)
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HESE Energy and Zenith Distribution

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in 
Neutrino Experiments

Cascades

Tracks

All Events
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Results on Atmospheric Neutrino Spectra

T. Ruhe for the IceCube Coll., Reconstruction and Machine Learning in Neutrino Experiments

IceCube Coll., EPJC 77, 
692 (2017)

The presence of very high energy events (∼1 PeV) in the
downward region favors the astrophysical component over
the prompt component. It should be noted that the presence
of the cosmic-ray knee introduces a kink into the prompt
component spectrum. As Fig. 12 shows, at energies above a
few hundred TeV, this kink further reduces the prompt
component.
Since the fit results for the conventional components are

not influenced by the prompt or astrophysical components,
we obtain the conventional νe spectrum independent of
assumptions about the other components. A separate fit is
performed by introducing conventional νe components
divided into four true energy ranges while keeping all of
the other components unchanged. The resulting best-fit
normalizations in each range produce the neutrino fluxes as
shown in Fig. 12 and Table III. The fit finds good
agreement with models of the conventional νe flux. The

other components in the fit show consistent values when
compared to the previous baseline fit.
The relatively high conventional νe flux normalization

measured in the first fit can be further examined by varying
the relative contribution from π and K to the conventional
neutrino fluxes. In a third fit, we introduce an extra fit
parameter (ξ) which modifies the K contributions in Eq. (7)
and in Eq. (8) simultaneously:

ΦνμðξÞ ¼ C · E−2.65
νμ · ðwπ þ ξ · wKÞ ð7Þ

ΦνeðξÞ ¼ C0 · E−2.65
νe · ξ · wK0 : ð8Þ

Avalue of ξ ¼ 1 corresponds to the standard expectations
based on the modified Honda model and a value of ξ > 1
corresponds to increased kaon production. As the conven-
tional νμ and νe flux normalizations are fixed to the baseline
model, ξ probes the deviations from the model due to
relative K contribution. The νe normalization C0 and the
kaon weightwK0 are fixed at the Honda flux. For the νμ part,
while the change in ξ corresponds to a change in shape of the
energy distribution, the total number of νμ events is fixed to
the baseline expectation due to the change in ξ. On the other
hand, an increase in the K contribution to νe causes the
number of events in the νe prediction to increase while the
shape is unchanged. This is because νe comes mostly from
K in these energies. The νe flux from π → μ → νe decays is
negligible, so there is little shape change in the νe energy
spectrum due to π. This fit finds ξ ¼ 1.3þ0.5

−0.4 with respect to
the modified Honda flux.
The central value of the K content is above standard

calculations, although the errors are large. Current models
of cosmic-ray interactions may underestimate the strange
quark content in the air shower. Enhanced strangeness
production has been measured in nuclear collisions at the
Relativistic Heavy Ion Collider [64], and air shower
experiments also measure higher muon contents for
inclined showers compared with the predictions from
existing hadronic interaction models [65–67].

IX. CONCLUSIONS

In conclusion, we obtained a sample of 1078 cascade
events in the analysis of one year of data from the
completed IceCube detector. This sample is used to
measure the conventional atmospheric νe flux. The analysis
is designed so that the conventional neutrino result is
largely unaffected by the prompt neutrino flux and/or the
astrophysical models. The analysis extends previous mea-
surements [2] of the νe flux to higher energies, and provides
higher precision. The first analysis with only the DeepCore
region as a fiducial volume was optimized in obtaining a
large number of lower energy events. Therefore, the
improvement comes from a better event selection by
expanding the fiducial volume for higher energy events

TABLE III. The results of the binned (“second”) fit to the νe
flux for an E−2 spectrum, in four energy bins.

log10Emin
ν − log10Emax

ν hEνi (GeV) E2
νΦνðGeV cm−2 s−1 sr−1Þ

2.0–2.5 270 ð1.0% 0.9Þ × 10−5
2.5–3.0 590 ð7.6% 1.9Þ × 10−6
3.0–4.0 2.5 × 103 ð6.4% 2.6Þ × 10−7
4.0–5.0 20.7 × 103 ð3.5% 3.3Þ × 10−8

FIG. 12 (color online). The atmospheric νe flux result (shown as
red filled triangles).Markers indicate the IceCubemeasurements of
the atmospheric neutrino flux while lines show the theoretical
models. Theblack circles and the blueband come from the through-
going upward νμ analyses [3,4]. The open triangles show the νe
measurement with the IceCube-DeepCore data set [2]. The
magenta band shows the modified ERS prediction.

MEASUREMENT OF THE ATMOSPHERIC νe SPECTRUM … PHYSICAL REVIEW D 91, 122004 (2015)

122004-13

IceCube Coll., PRD 91, 
122004 (2014)


