"Deep Learning in KM3NeT"

Simona Maria Stellacci (INFN) for the KM3NeT Collaboration

Cristiano Bozza, Rosa Coniglione, Chiara De Sio, Thomas Eberl, Steffen Hallmann, Michael Moser, Stefan Reck

> "Reconstruction and Machine Learning in Neutrino Experiments" 16-18 September, Hamburg

KM3NeT Infrastructure

KM₃NeT is a neutrino research infrastructure located in the Mediterranean sea.

Main features:

- Wide energy range: 3GeV→10PeV
- Full sky coverage with the best sensitivity for galactic source
- All-flavuor neutrino detection
- Good angular resolution ($<0.5^{\circ}$ for muons; $\sim 2^{\circ}$ for electrons at high energy)

KM3NeT Experiment

Main Goals:

- identification of high energy astrophysical neutrino sources
- determination of neutrino mass hierarchy
- supernova core collapse
- Dark Matter

Detection principle : the neutrinos are detected by measuring the Cherenkov light emitted by secondary particle generated in neutrino interaction

KM3NeT Detector

Detection Unit: vertical string hosting 18 DOMs anchored at seabed and taut by buoys.

KM3NeT Site

Astroparticle Research with Cosmic in the Abyss

- 2 "building blocks" of 115 Detection Units each
 700 m in height
- Depth 3500m
- DOMs spaced 90m in X-Y, 36 m in Z

Oscillation Research with Cosmic in the Abyss

KM₃NeT/ORCA

- 1 "building blocks" of 115 Detection Units
 200 m in height
 Don'th accommodation
- Depth 2500m
- ➤ DOMs spaced 20m in X-Y, 9 m in Z

Deep Learning applications in KM3NeT/ARCA

Deep Learning applications in KM3NeT/ARCA

Four Convolutional Neural Network (CNN) models designed for :

Classification

up-going / down – going incident particle

 \blacktriangleright V $_{\mu}$ CC / V $_{e}$ CC interaction

<u>Regression</u>

particle energy estimation

particle direction estimation

Data Preparation

Data Preparation

258,879 total events

NVIDIA GEFORCE GTX-1080Ti GPU

Up/Down – going Classification

Model Architecture:

Inputs (TZ)

- 3 x 2D Convolutional block
 - > 2 x 2D Conv layers+ Average Pooling layers
- ➤ 3 x Fully Connected layers

Up/Down – going Classification

Performance depends on the track length in detector

Best performance :

- high energy events
- short distances from centre of detector

Efficiency : numbers of well - classified events/total test events

Classification v_{μ} CC - v_{e} CC interactions

Classification $v_{\mu}CC - v_eCC$ interactions

Best performance :

- high energy events
- short distances from centre of detector

Comparison with conventional algorithms (KM3NeT/ARCA)

Direction Estimation

True **vs** *Std. Reconstruction Direction*(*Z*)

True **vs** *CNN Reconstruction Direction*(*Z*)

Estimated **vs** True Neutrino direction

Comparison on Up/Down – Going Classification > apply "labels" to reconstructed events

 $\succ \cos(\theta_{\pi}) > 0$ "up-going"

 $\succ \cos(\theta_{\tau}) \leq 0$ "down-going"

compare predictions

Accuracy on Up/Down – Going Classification

KM₃NeT standard reconstruction $(-lik>60 and log(\beta)>-2.8)$

Classification Accuracy

CNN classification running test on $v_{\mu}CC$ events

Classification Accuracy

0.998

0.987

Only $v_{\mu}CC$ reconstructed events with quality cuts

CNN always yields a direction, even when the conventional fit does not meet the quality requirements.

Deep Learning applications in KM3NeT/ORCA

Deep Learning applications in KM3NeT/ORCA

Convolutional Neural Network (CNN) models designed for :

Classification

- background suppression
- track/shower like event topologies

<u>Regression</u>

- particle energy estimation
- particle direction estimation
- vertex position

Error Estimate on Regression results

Model Architectures

Background/Signal Classification

MonteCarlo sample:

- neutrinos
- atmospheric muons
- ➤ random noise

Data Set : Training Set (75%)
Validation Set (2.5%)
Test Set (22.5%)

CNN model architecture: 3D Conv blocks + 2 fully connected layers Output layer: distinction between neutrino and no neutrino - events

Background/Signal Classification <u>RESULTS</u>

The comparison is made using ONLY the events from the **test set**

Background/Signal Classification <u>RESULTS</u>

The comparison is made using ONLY the events from the **test set**

Track/Shower – like event Classification

Events are mostly neutrino events Background events discarded by the CNN classifier

Track/Shower – like event Classification

Events are mostly neutrino events

Sample:

- ≥ 50% track-like events ($v_{\mu}CC$)
- ➢ 50% shower-like events
 - $> 50\% v_e CC$
 - \succ 50% $v_e NC$

Background events discarded by the CNN classifier

The dataset is "reweighted" to make the track/shower ratio indipendent of neutrino energy

Reweighted data set :
Training Set (70%)
Validation Set (6%)
Test Set (24%)

Track/Shower – like event Classification RESULTS

Event is classified as "track-like" events only if probability is ≥ 0.5

Fraction of the events classified as "track-like" events

> 1 GeV < E_v < 40 GeV

Different interaction channels $(v_{\mu}CC, v_{e}CC, v_{e}NC)$

Track/Shower – like event Classification <u>RESULTS</u>

Event Parameter Regression

CNN network architecture: 3D Conv blocks + 1 fully connected layer **Properties Estimated :**

neutrino energy

➤ direction

▶vertex position

Energy Fit

CNN: Track like ($v_{\mu} - CC$)

$$MRE = \langle \left| \frac{E_{reco} - E_{true}}{E_{true}} \right| \rangle$$

The performances of the CNN regressor with respect the Maximum Likelihood shower reconstructed algorithm are significantly better.

The median absolute error (ME) is defined as the median of the distribution of residuals distribution for the reconstructed direction

CNN vs Max Likelihood method:

➤ full direction

zenith angle

The performance of CNN are significantly better than the MaxLikelihood method for energies below a few GeV.

The performance of MaxLikelihood method improves with the energy.

Error Estimate

Output of the network $\rightarrow \vec{y}_{reco}$

 $\vec{y}_{reco} = (E + dir_{reco} + vtx_{reco}))$

one additional neuron to estimate the uncertainty for each component of \vec{y}_{reco}

The network learns to estimate the average absolute residual $\sigma_{reco} \approx \langle y_{abs} \rangle$

Error Estimate

Output of the network $\rightarrow \vec{y}_{reco}$

 $\vec{y}_{reco} = (E + dir_{reco} + vtx_{reco}))$

one additional neuron to estimate the uncertainty for each component of \vec{y}_{reco}

Loss Function $L = \frac{1}{n} \sum_{i=0}^{n} (\sigma_{reco} - |y_{true} - y_{reco}|^2)$ reconstructed uncertainty

The network learns to estimate the average absolute residual $\sigma_{reco} \approx \langle y_{abs} \rangle$

The zenith angle resolution improves significantly when the events with the largest reconstruction error are discarded.

Conclusions and Outlook

Deep Learning models produce very promising results

They provide stable estimations comparable with the conventional reconstruction algorithms

Next Steps

Detailed detector description

• Add $v_r CC$ in topology classification

* Identification of neutrino flavour

Back-up slides

*KM*₃NeT/ARCA Astroparticle Research with Cosmic in the Abyss

KM₃NeT/ORCA

Oscillation Research with Cosmic in the Abyss

Search for point – like Galactic sources

High Energy neutrinos (100 TeV - 10 PeV):

Track –like events with angular resolution less than 0.2°

Cascade – like events thanks to the good angular resolution (1° - 2°)

Determination of Neutrino Mass Hierarchy

Indirect Dark Matter search

Track –like and Cascade-like events induced by "low" energy neutrinos (few GeV – 10 TeV)

Comparison Settings (ARCA)

➤ run "official" software (JGandalf) on the same test dataset used for CNN

 \succ selected only $v_{\mu}CC$ events

compare results on direction estimation

compare performance on up/down – going selection