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Neutrinoless double beta decay
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2νββ decay:

● conventional decay 
in Standard Model

0νββ decay:

● Rich physics implications

● Majorana neutrino

● Lepton number violation

● Absolute neutrino mass scale

2ν vs 0ν spectrum:

● Continuum vs peak

● Good energy resolution 
required to separate 
0ν from 2ν



Working Principle
● Wire planes:

○ V-wires: induction signal
○ U-wires: collection signal
➔ Reconstruction of x- and y-position and charge energy

● APDs: scintillation light detection for drift time 
estimation
➔ Reconstruction of z-position and scintillation energy

4

EXO-200 experiment and event detection

● Located at WIPP in Carlsbad, U.S. 
(1585 m.w.e. overburden)

● Single phase radiopure time projection
chamber (TPC) filled with 200kg LXe 
enriched to 80.6% in 136Xe (Q = 2.458 MeV)

● Double-sided TPC symmetric around cathode

● Complementary measurements
● Scintillation light (178 nm) by APDs
● Ionization charge by 2 crossed wire grids

● Full 3D position reconstruction with 
charge and light channel
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Simple SS/MS classification

● ββ mostly deposits energy at single location (SS)

● Some ββ MS events due to bremsstrahlung

● Example: 0νββ 75% SS

● 𝛾 backgrounds mostly deposits at multiple locations (MS)
due to Compton scattering

● Example: 𝛾 ~15% SS  (at E𝛾=Q)

à SS/MS classification is very 
powerful for background rejection
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Event energy reconstruction with 
Deep Neural Networks (DNN)



Charge-only energy reconstruction

● Energy reconstruction from raw
data of charge collection (U) wires

● Inputs are greyscale images from
arranging the U-wire channels and
encoding the amplitudes as pixel values
● baseline subtraction
● channel gains correction
● crop waveforms in time

● Target variable is total energy available
in MC that is deposited on any wire

● Uniform training data distribution 
in energy and in detector volume 
proved crucial for training

● Implementation in Keras
(with TensorFlow backend) 
on GPU Cluster
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DNN Architecture

● Network TPC branches share weights
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Validation on 228Th MC simulation

● Reconstruction works over the energy range under study
● Residuals w/o energy dependent features

● Resolution (σ/E) at the 208Tl peak at 2615 keV
● DNN: 1.21% (SS: 0.73%)
● Trad.Recon: 1.35% (SS: 0.93%)

● DNN outperforms in disentangling
mixed induction and collection signals
(see valley right before 208Tl peak)
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Validation on 228Th calibration data

● Crop window adjusted relative to APD signal to account for different trigger strategies

● Correction applied to account for finite electron lifetime in TPC

● DNN works on real data

● Residuals w/o energy dependent features

● Resolution variation over detector volume
on level observed in traditional reconstruction
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“Rotated“ energy

● Using anti-correlation between ionization (from DNN) 
and scintillation (from traditional EXO reconstruction)
● “Rotated” energy provides optimal 

resolution at the Q value
● MC based fit for weekly calibration

● Reduced APD excess noise in Phase 2

● DNN outperforms traditional reconstruction
in almost every week
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Traditional
DNN

Energy resolution

● Good spectral agreement between 
source calibration data (points) and 
MC simulation (lines). On level 
observed in traditional reconstruction

● Strong improvement in SS energy 
resolution, esp. at high energies

à DNN energy measurement shows
strong potential toward improving
physics goal significantly
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Signal-background discrimination with
Deep Neural Networks (DNN)



Design of DNN discriminator

● Binary discriminator for ββ vs 𝛾 events

● Training data is identical to energy DNN
● 50% ββ signal, 50% 𝛾 background

● MC event distributions uniform 
in detector volume
● Event topological discrimination only
● No assumption on spatial distributions

● MC event distribution uniform in energy
● validation on 2νββ data possible

● DNN architecture inspired by 
the Inception architecture

● Shared weights in TPC braches
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Re-generated images

● Replaced raw images with images re-generated 
from signals found in traditional EXO reconstruction

● DNN then limited to precision of traditional reconstruction

● Natural approach of preserving locality and 
of handling varying number of signals 

à DNN prediction is fully based on information available 
to EXO reconstruction (no strange feature e.g. in noise)

à Both DNN concepts outperform BDT used in 2018 0νββ analysis*

● Easier to implement at scale because raw data are not needed anymore
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Sanity check – Event size

● Recap:
● ββ mostly deposits energy at single location
● 𝛾 backgrounds deposits at multiple locations

● ββ event size usually smaller than in 𝛾 events

● DNN signal/background identification 
efficiency correlates with the true 
event size known in MC simulation 

● Indicates the DNNs pick up correct 
features on the waveform to 
reconstruct event (find wire signals, 
cluster signals into energy deposits), 
thus to discriminate signal/background 
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2019 0νββ search* 

● Reasonable spectral agreement for DNN 
between data (points) and MC simulation (lines).
Validated with 𝛾: 226Ra, 228Th, 60Co    ββ: 2νββ

● Blinded 0νββ analysis performed 

● 3-dimension ML fit in both SS and MS events:
Energy + DNN (topology) + Standoff distance (spatial)
● Make the most use of multi-parameter analysis
● SS/MS spectra constrained by SS fraction

● Improvement of ~25% in 0νββ half-life sensitivity 
compared to using energy spectra + SS/MS alone 

DESY – 09/2019 – Tobias Ziegler 16
* arXiv 1906.02723
submitted to Phys. Rev. Lett.



Best fit

● Energy spectra: SS (left) and MS (bottom right)

● DNN spectra: SS/MS applied to all events. Projection of ROI events (top right)

à No statistical significant signal observed

DESY – 09/2019 – Tobias Ziegler 17



 yr]⋅Exposure [kg 
0 50 100 150 200 250

 [y
r]

1/
2

T

0

20

40

60

80

100

2410×

sensitivity
68% C.I. of limits
data limit

 projectionT⋅M

Jun 2015
projection
Sensitivity

Start of Phase-2

2012

2014

2018

2019

Results

● No statistical significant signal observed

Limit   T* +⁄
-.// > 3.5 4 10+6yr (90% C.L.)

Sensitivity   5.0 4 10+6yr (90% C.L.)

● Improvement of ~25% in 0νββ half-life 
sensitivity compared to using 
energy spectra + SS/MS alone 
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2012: Phys.Rev.Lett. 109 (2012) 032505
2014: Nature 510 (2014) 229-234
2018: Phys. Rev. Lett. 120, 072701 (2018)
2019: arXiv 1906.02723

1D Fit: Energy
3D Fit: Energy + DNN + Standoff
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Combining both DNNs

● 0νββ half-life sensitivity with DNN energy measurement
● Re-evaluated all significant contributions to systematic uncertainties

● Improvement over traditional energy spectra + SS/MS alone 
● ~10% in 1D fit configuration (DNN energy)
● ~40% in 3D fit configuration (DNN energy, DNN discriminator, Standoff)
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Summary

● EXO-200 has demonstrated the use of DL for data analysis directly from raw data

● Improved energy resolution with DNN over traditional analysis in both MC and real data*

● Good spectral agreement of data/MC and good detector uniformity on complete dataset

● DNN signal/background discriminators outperform BDT based approach
● DNN pick up correct features (e.g. size)
● Reasonable spectral agreement of data/MC on complete dataset

● One of the most sensitive searches for 0νββ with the full EXO-200 dataset giving a 
sensitivity of 5.0 4 10+6yr at 90% C.L. for 136Xe 0νββ and
first search directly using a DNN discriminator**

● Future experiments (like nEXO) will benefit from DNN methods in simplifying
the processing of data and extraction of high level features***
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Published
JINST 13.08 (2018) current

Input size 1024 x 76 2 x (350 x 38)
Particle ID 𝛾 50% 𝛾, 50% ββ

Particle gun Center of TPC Uniform in TPC
Energy [keV] 500—3500 1000—3000

Electron lifetime 3500 µs infinity

Learning rate fixed step-wise reduction
Architecture 6x Conv layers 9x Conv layers

Differences to published DNN
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Training distribution pitfall

● Uniform energy spectrum proved crucial for training

● Otherwise overtraining on sharp peaks in training
(e.g. with 228Th source, green)
● DNN shuffles independent validation events 

towards sharp peaks from training spectrum

à use uniform training distribution in 
energy and in detector volume
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Training Validation



Training

● a
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MC simulation
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Performance on mixed signals

● Since JINST 13.08 analysis, known issues with mixed 
induction and collection signals in EXO reconstruction
● DNN study triggered improvements to 

traditional EXO reconstruction pipeline 
(combined fit of both templates) that
mitigates this issue

● DNN still outperforms in disentangling
mixed induction and collection signals

à DNN energy measurement
more symmetric

à Less events leak into ROI of
0νββ from 232Th background
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Th-228 calibration data

● a
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Detector uniformityWeekly resolution at 208Tl peak



Source calibration data
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“Rotated“ energy
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Th-228 calibration data
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Source calibration data
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Background reduction in the ROI

● Better induction and collection 
disentangling and improved energy 
resolution already make a quantifiable 
improvement to physics goals
(background reduction in ROI)

● Projected ~26% (21%) reduction of 
232Th background in Phase 1 (Phase 2) 
compared to EXO reconstruction
● ~14% (7%) considering induction 

effect alone, i.e. fixed ROI
● Using simple 1/ 𝐵 scaling, 

this suggests at least ~4% (3%) 
sensitivity improvement for Phase 1 
(Phase 2)
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Design of DNN discriminator
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DNN validation
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Combining topology and position

● In physics data, γ backgrounds enter 
detector from materials external to LXe

● Rate is exponentially reduced by LXe self-shielding, 
providing additional information on γ backgrounds

● Wrapping topology (via DNN) and 
spatial discriminator 
(via Standoff distance)

● DNN discrimination 
outperforms BDT 
used in 2018
0νββ analysis*
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DNN Standoff distance

* Phys. Rev. Lett. 120, 072701 (2018)



Sanity check – Event position
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2νββ background-subtracted data

● a
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Performance on real data

● Data/MC agreement validated with different data  ( 𝛾: 226Ra, 228Th, 60Co.  𝛽: 2νββ data )

● DNN-Raw has systematic trend in residual. Issues especially for ββ signal class

● DNN-Recon shows improved agreement compared to DNN-Raw
● Shielded from inaccuracies in modelling raw signals and complex detector effects

● Shape error is mitigated by profiling variables at cost of discrimination power 

● Remaining shape differences are 
taken into account as 
systematic uncertainties
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Capturing spatial information in DNN
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Capturing spatial information in DNN
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Capturing spatial information in DNN
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