# Deep Learning in the EXO-200 experiment

## ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

Tobias Ziegler on behalf of the EXO-200 collaboration DESY, 09/2019







## Neutrinoless double beta decay





 $2\nu\beta\beta$  decay:

 conventional decay in Standard Model  $0\nu\beta\beta$  decay:

- Rich physics implications
- Majorana neutrino
- Lepton number violation
- Absolute neutrino mass scale

 $2\nu$  vs  $0\nu$  spectrum:

- Continuum vs peak
- Good energy resolution required to separate
  0ν from 2ν

#### DESY - 09/2019 - Tobias Ziegler

## EXO-200 experiment and event detection

- Located at WIPP in Carlsbad, U.S. (1585 m.w.e. overburden)
- Single phase radiopure time projection chamber (TPC) filled with 200kg LXe enriched to 80.6% in <sup>136</sup>Xe (Q = 2.458 MeV)
- Double-sided TPC symmetric around cathode
- Complementary measurements
  - Scintillation light (178 nm) by APDs
  - Ionization charge by 2 crossed wire grids
- Full 3D position reconstruction with charge and light channel







## Simple SS/MS classification







- ββ mostly deposits energy at single location (SS)
- Some ββ MS events due to bremsstrahlung
- Example:  $0\nu\beta\beta$  75% SS

- γ backgrounds mostly deposits at multiple locations (MS) due to Compton scattering
- Example:  $\gamma \sim 15\%$  SS (at  $E_{\gamma}=Q$ )
- → SS/MS classification is very powerful for background rejection



## Charge-only energy reconstruction



- Energy reconstruction from raw data of charge collection (U) wires
- Inputs are greyscale images from arranging the U-wire channels and encoding the amplitudes as pixel values
  - baseline subtraction
  - channel gains correction
  - crop waveforms in time
- Target variable is total energy available in MC that is deposited on any wire
- Uniform training data distribution
  Uniform training data distribution
  in energy and in detector volume
  proved crucial for training
- Implementation in Keras
  (with TensorFlow backend)
  on GPU Cluster





## **DNN** Architecture

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

• Network TPC branches share weights



## Validation on <sup>228</sup>Th MC simulation



- Reconstruction works over the energy range under study
  - Residuals w/o energy dependent features
- Resolution ( $\sigma$ /E) at the <sup>208</sup>Tl peak at 2615 keV
  - DNN: 1.21% (SS: 0.73%)
  - Trad.Recon: 1.35% (SS: 0.93%)
- DNN outperforms in disentangling mixed induction and collection signals (see valley right before <sup>208</sup>Tl peak)





## Validation on <sup>228</sup>Th calibration data

- Crop window adjusted relative to APD signal to account for different trigger strategies
- Correction applied to account for finite electron lifetime in TPC
- DNN works on real data
- Residuals w/o energy dependent features
- Resolution variation over detector volume
  on level observed in traditional reconstruction





ERLANGEN CENTRE FOR ASTROPARTICLE

PHYSICS

## "Rotated" energy



- Using anti-correlation between ionization (from DNN) and scintillation (from traditional EXO reconstruction)
  - "Rotated" energy provides optimal resolution at the Q value
- MC based fit for weekly calibration
- Reduced APD excess noise in Phase 2
- DNN outperforms traditional reconstruction in almost every week





DNN Ionization Energy [keV]

## **Energy resolution**

- Good spectral agreement between source calibration data (points) and MC simulation (lines). On level observed in traditional reconstruction
- Strong improvement in SS energy resolution, esp. at high energies
- $\rightarrow$  DNN energy measurement shows strong potential toward improving physics goal significantly





## Signal-background discrimination with Deep Neural Networks (DNN)

## Design of DNN discriminator



- Binary discriminator for  $\beta\beta$  vs  $\gamma$  events
- Training data is identical to energy DNN
  - 50%  $\beta\beta$  signal, 50%  $\gamma$  background
- MC event distributions uniform in detector volume
  - Event topological discrimination only
  - No assumption on spatial distributions
- MC event distribution uniform in energy
  - validation on  $2\nu\beta\beta$  data possible
- DNN architecture inspired by the Inception architecture
- Shared weights in TPC braches



## **Re-generated images**



- Replaced raw images with images re-generated from signals found in traditional EXO reconstruction
- DNN then limited to precision of traditional reconstruction
- Natural approach of preserving locality and of handling varying number of signals
- → DNN prediction is fully based on information available to EXO reconstruction (no strange feature e.g. in noise)
- $\rightarrow$  Both DNN concepts outperform BDT used in 2018 0νββ analysis<sup>\*</sup>
- Easier to implement at scale because raw data are not needed anymore





## Sanity check – Event size

- Recap:
  - ββ mostly deposits energy at single location
  - γ backgrounds deposits at multiple locations
- $\beta\beta$  event size usually smaller than in  $\gamma$  events

- DNN signal/background identification efficiency correlates with the true event size known in MC simulation
- Indicates the DNNs pick up correct features on the waveform to reconstruct event (find wire signals, cluster signals into energy deposits), thus to discriminate signal/background



β ★

ind.

coll.



## 2019 $0\nu\beta\beta$ search\*



- Reasonable spectral agreement for DNN between data (points) and MC simulation (lines).
   Validated with γ: <sup>226</sup>Ra, <sup>228</sup>Th, <sup>60</sup>Co ββ: 2νββ
- Blinded  $0\nu\beta\beta$  analysis performed
- 3-dimension ML fit in both SS and MS events: Energy + DNN (topology) + Standoff distance (spatial)
  - Make the most use of multi-parameter analysis
  - SS/MS spectra constrained by SS fraction
- Improvement of ~25% in  $0\nu\beta\beta$  half-life sensitivity compared to using energy spectra + SS/MS alone





submitted to Phys. Rev. Lett.

16

## Best fit

**ERLANGEN CENTRE** FOR ASTROPARTICLE PHYSICS

- Energy spectra: SS (left) and MS (bottom right)
- DNN spectra: SS/MS applied to all events. Projection of ROI events (top right)
- → No statistical significant signal observed



### Results





## Combining both DNNs



- $0\nu\beta\beta$  half-life sensitivity with DNN energy measurement
  - Re-evaluated all significant contributions to systematic uncertainties
- Improvement over traditional energy spectra + SS/MS alone
  - ~10% in 1D fit configuration (DNN energy)
  - ~40% in 3D fit configuration (DNN energy, DNN discriminator, Standoff)



## Summary

RELANGEN CENTRE FOR ASTROPARTICLE PHYSICS

- EXO-200 has demonstrated the use of DL for data analysis directly from raw data
- Improved energy resolution with DNN over traditional analysis in both MC and real data\*
- Good spectral agreement of data/MC and good detector uniformity on complete dataset
- DNN signal/background discriminators outperform BDT based approach
  - DNN pick up correct features (e.g. size)
  - Reasonable spectral agreement of data/MC on complete dataset
- One of the most sensitive searches for 0νββ with the full EXO-200 dataset giving a sensitivity of 5.0 · 10<sup>25</sup>yr at 90% C.L. for <sup>136</sup>Xe 0νββ and first search directly using a DNN discriminator\*\*
- Future experiments (like nEXO) will benefit from DNN methods in simplifying the processing of data and extraction of high level features\*\*\*

University of Alabama, Tuscaloosa AE, USA — M Hughes, 1 Ostrovskiy, A Piepke, AK Soma, V Veeraraghavan University of Bern, Switzerland — J-L Vuilleumier University of California, Irvine, Irvine CA, USA — M Moe California Institute of Technology, Pasadena CA, USA — P Vogel Carleton University, Ottawa ON, Canada — I Badhrees, W Cree, R Gornea, K Graham, T Koffas, C Licciardi, D Sinclair Colorado State University, Fort Collins CO, USA — C Chambers, A Craycraft, W Fairbank Jr, D Harris, A Iverson, I Todd, T Walton Drexel University, Philadelphia PA, USA — MJ Dolinski, EV Hansen, YH Lin, Y-R Yen Duke University, Bloomington IN, USA — JB Albert, S Daugherty Laurentian University, Sudbury ON, Canada — B Cleveland, A Der Mesrobian-Kabaktan, J Farine, A Robinson, U Wichoski University of Maryland, College Park MD, USA — C Hall University of Massachusetts, Amherst MA, USA — S Feyzbakhsh, S Johnston, A Pocar

McGill University, Montreal QC, Canada — T Brunner, Y Ito, K Murray

## The EXO-200 Collaboration

SLAC National Accelerator Laboratory, Menlo Park CA, USA — M Breidenbach, R Conley, T Daniels, J Davis, S Delaquis, A Johnson, LJ Kaufinan, B Mong, A Odian, CY Prescott, PC Rowson, JJ Russell, K Skarpaas, A Waite, M Wittgen University of South Dakota, Vermillion SD, USA — J Daughhetee, R MacLellan Friedrich-Alexander-University Erlangen, Nuremberg, Germany G Anton, R Bayerlein, J Hoessl, P Hufschmidt, A Jamil, T Michel, M Wagenpfeil, G Wrede, T Ziegler IBS Center for Underground Physics, Daejeon, South Korea — DS Leonard IHEP Beijing, People's Republic of China — G Cao, W Cen, T Tolba, L Wen, J Zhao ITEP Moscow, Russia — V Belov, A Burenkov, M Danilov, A Dolgolenko, A Karelin, A Kuchenkov, V Stekhanov, O Zeldovich University of Illinois, Urbana-Champaign IL, USA — D Beck, M Coon, S Li, L Yang Stanford University, Stanford CA, USA — R DeVoe, D Fudenberg, G Gratta, M Jewell, S Kravitz, G Li, A Schubert, M Weber, S Wu Stony Brook University of Munich, Garching, Germany — W Feldmeier, P Fierlinger, M Marino TRIUMF, Vancouver BC, Canada — J Dilling, R Krücken, Y Lan, F Retière, V Strickland Yale University, New Haven CT, USA — Z Li, D Moore, Q Xia

# Deep Learning in the EXO-200 experiment

## ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS









## **Bonus Slides**

## **Event display**



Example multiple-scatter  $\gamma$  event in EXO-200:





|                   | Published<br>JINST 13.08 (2018) | current        |
|-------------------|---------------------------------|----------------|
| Input size        | 1024 x 76                       | 2 x (350 x 38) |
| Particle ID       | γ                               | 50% γ, 50% ββ  |
| Particle gun      | Center of TPC                   | Uniform in TPC |
| Energy [keV]      | 500-3500                        | 1000-3000      |
| Electron lifetime | 3500 µs                         | infinity       |

| Learning rate | fixed          | step-wise reduction |
|---------------|----------------|---------------------|
| Architecture  | 6x Conv layers | 9x Conv layers      |

## Training distribution pitfall



- Uniform energy spectrum proved crucial for training
- Otherwise overtraining on sharp peaks in training (e.g. with <sup>228</sup>Th source, green)
  - DNN shuffles independent validation events towards sharp peaks from training spectrum









## Training



• a



## MC simulation





DESY - 09/2019 - Tobias Ziegler

Z [mm]

## Performance on mixed signals



- Since JINST 13.08 analysis, known issues with mixed induction and collection signals in EXO reconstruction
  - DNN study triggered improvements to traditional EXO reconstruction pipeline (combined fit of both templates) that mitigates this issue
- DNN still outperforms in disentangling mixed induction and collection signals



- → DNN energy measurement more symmetric
- → Less events leak into ROI of 0vββ from <sup>232</sup>Th background



## Th-228 calibration data



• a



### Source calibration data





## "Rotated" energy





## Th-228 calibration data





## Source calibration data





## Background reduction in the ROI

- Better induction and collection disentangling and improved energy resolution already make a quantifiable improvement to physics goals (background reduction in ROI)
- Projected ~26% (21%) reduction of <sup>232</sup>Th background in Phase 1 (Phase 2) compared to EXO reconstruction
  - ~14% (7%) considering induction effect alone, i.e. fixed ROI
  - Using simple 1/√B scaling, this suggests at least ~4% (3%) sensitivity improvement for Phase 1 (Phase 2)



ERLANGEN CENTRE

PHYSICS

FOR ASTROPARTICLE

## Design of DNN discriminator







ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

## Combining topology and position



- In physics data, γ backgrounds enter detector from materials external to LXe
- Rate is exponentially reduced by LXe self-shielding, providing additional information on γ backgrounds
- Wrapping topology (via DNN) and spatial discriminator (via Standoff distance)
- DNN discrimination
  outperforms BDT
  used in 2018
  0vββ analysis\*







## Sanity check - Event position





## $2\nu\beta\beta$ background-subtracted data





## Performance on real data



- Data/MC agreement validated with different data ( $\gamma$ : <sup>226</sup>Ra, <sup>228</sup>Th, <sup>60</sup>Co.  $\beta$ :  $2\nu\beta\beta$  data)
- DNN-Raw has systematic trend in residual. Issues especially for  $\beta\beta$  signal class
- DNN-Recon shows improved agreement compared to DNN-Raw
  - Shielded from inaccuracies in modelling raw signals and complex detector effects
- Shape error is mitigated by profiling variables at cost of discrimination power
- Remaining shape differences are taken into account as Signal Signal Ra-226 Ra-226 systematic uncertainties counts counts 0.2 Normalized o 0.1 **DNN-Raw DNN-Recon** SS Ra-226 1.0 $2\nu\beta\beta$ 0.1 $0\nu\beta\beta$ Normalized counts 0.0 0.1 0.2 0.0 ·..... MS 1.3 1.3 ..0<del>|</del>..... Data/MC 0.1 Oat 0.7 0.7 0.8 0.5 0.8 0.5 0.2 0.5 0.2 1.0 Sig-like Bkg-Ĭike Sig-like Bkg-like Discriminator Sig-like **DNN-Recon** Bkg-like Discriminator

## Capturing spatial information in DNN





## Capturing spatial information in DNN





## Capturing spatial information in DNN



