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Motivation: Topological Track Reconstruction

Recapitulation
Talk by M. Meyer: “Track Reconstruction and Characterization
in Liquid Scintillator Detectors at High Energies”
Large liquid scintillator detectors have high dead time due to cosmic
muons and resulting cosmogenic isotopes.
Topological Track Reconstruction (TTR) developed for
reconstructing high energy muons (∼ GeV).
Determine volume containing the muon track by investigating
dE/dx.
Reduce vetoed volume and increase active volume.
Current focus lies on the
Jiangmen Underground Neutrino Observatory (JUNO).
Other Experiments:

1 LENA
2 Borexino
3 SNO+

See also: arXiv:1803.08802
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https://arxiv.org/abs/1803.08802


JUNO

20 kton liquid scintillator
in acrylic sphere
∼18.000 20 inch PMTs;
∼25.000 3 inch PMTs
for optical coverage of
77%
Plastic scintillator on
top and water
Cherenkov detector as
Muon veto
Main Goals:
Determination of the
mass hierarchy,
improvement of the
precision on oscillation
parameters and
measurement of solar
neutrinos
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Motivation: low energy events

Low energy events
Positrons, electrons and gammas; energies of a few MeV
Treated as point-like events in contrary to the track-like GeV muons.

What can we gain with low energy events?

Applications

Localisation of e+, e− and γ events
Direction reconstruction using Cherenkov photons for background
rejection (without TTR)
Most important: e+/e− and γ/e− discrimination
⇒ great use for background suppression and study
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Motivation: e+/e− discrimination

Mass hierarchy
Signal: inverse beta decay from reactor neutrinos:
νe + p → e+ + n
Background: Muon induced cosmogenic isotopes 8He, 9Li
8He→ 8Li + e− + ... 8Li→ X + n + ...
9Li→ 9Be + e− + ... 9Be→ X + n + ...

Solar sector
Signal: elastic scattering of solar neutrinos off electrons
νe + e− → νe + e−

Background: β+ decay from 11C, 10C
10C→ 10B + e+ + γ + ...
11C→ 11B + e+ + ...
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Motivation: γ/e− discrimination

Natural radioactivity from all
kinds of materials in and
around the detector
Examples: rock, water buffer,
steel, etc.
⇒ Gamma emission in the
fiducial volume.
With γ/e− discrimination one
can

Study and characterise the
gamma background.
Reduce the gamma
background in the solar
sector.

[Neutrino Physics with JUNO; DOI:
10.1088/0954-3899/43/3/030401]
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General concept of the TTR

Known reference point in time tref and space rref

Assume straight particle path with velocity c0.
Calculate possible locations x of the particle at time t(x).

t(x) = tref ±
|x− rref |

c0︸ ︷︷ ︸
particle

+
|rj − x|
vg (ε)︸ ︷︷ ︸
photon
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Probability density functions

Development of probability density
functions (p.d.f.s) when taking
more effects into account.

1 Isochrones coming from the
inversion of t(x).

2 Time uncertainty of scintillation
light and response of photosensor

3 Detection and propagation
effects like angular acceptance
and attenuation

7 / 24



Reconstruction method I

Create a p.d.f. for every hit and each PMT.
Superimpose the p.d.f.s for every bin in the detector.
Gain a probability mask for the whole detector showing the
most-likely origin of the light.
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Reconstruction method II

Treat iteration 0 as truth;
discard all bins below threshold.
Reconstruct again in the area of
interest based on the previous
iteration.
Refine the binning in later
iteration steps for more detailed
result.
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Low energy events

Range in liquid scintillator
for e+/e− :∼ cm
for γ :∼ 50 cm

Resolution > 10 cm
Cloud-like structure
Annihilation gammas
⇒ lower contrast for e+ events;
energy deposition for e− events
is more point-like

Discrimination:
Determine maximum voxel Vmax

Plot average voxel content C
over radius R around Vmax

Build derivative D (25 cm
average)

→ expect C(R) to decrease faster for
electrons than for positrons
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e+/e− discrimination cut
Discrimination parameter:
Minimum of derivative of C(R) Simulation of each 1000

positron and electron events
(offline)
kinetic energy:
Ee+ = 2.6MeV,
Ee− = Ee+ + 2 · 511 keV
Position: (0, 10, 0) m from
JUNO center
Direction: random
TTS (FWHM) 20 inch PMTs:
3ns for 28%,
12ns for 72%
Vertex reconstruction + TTR
Determination of derivative
Result: Overlapping, but
distinguishable distribution
⇒ Perform a separating cut
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Results with different energies

Lower energies yield better results.
Above 8.5MeV the discrimination potential vanishes.
The gammas from the annihilation are lost in the energy deposition
of the positron-ionisation at higher energies.
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γ/e− discrimination

Simulation of each 1000 gamma
and electron events (offline)
Kinetic energy: 2MeV
Position: (0, 10, 0) m from
JUNO center
Direction: random
TTS (FWHM) 20 inch PMTs:
3ns for 28%,
12ns for 72%
Vertex reconstruction + TTR
Determination of derivative
Result: Similar to the result of
the e+/e− discrimination;
again a cut can be done with
sufficient efficiency
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Performance

accuracy = number of true predictions
total number of events

Different energies
(radius: 10m)

Different position
(vis. e.: 2MeV)

e+/e− γ/e−

Stable discrimination throughout detector volume
At detector edge used discrimination parameter needs adjustment
(limit to a certain area)
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Use Machine Learning for e+/e− discrimination
Convolutional Neural Network (CNN) often used for image classification.
Usage of TensorFlow as Machine Learning (ML) framework
Testing the potential of three different inputs:

1 1D radial event profile ⇒ 1D-CNN
Similar to the previous method
Fast performance

2 3D TTR result ⇒ 3D-CNN
Unbiased network
Net can consider asymmetric features
More computing time

3 “Gradient field” ⇒ 3 channel
3D-CNN

Like method 2, but giving the net a
parameter already proven as useful
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CNN structure
1D

Input size: [300]
Conv1D (100 filters, size: [5])
Activation (ReLu)
MaxPooling1D (size: [3])
Conv1D (10 filters, size: [3])
Activation (ReLu)
Conv1D (5 filters, size: [2])
Activation (ReLu)
MaxPooling1D (size: [3])
Flattening
Dense (100 neurons)
Activation (ReLu)
Batch normalisation
Dense (2 neurons)
Activation (Softmax)

3D (3 channel)

Input size: [17x17x17 (x3)]
Conv3D (100 filters, size:
[3x3x3]
Activation (ReLu)
Conv3D (8 filters, size:
[2x2x2])
Activation (ReLu)
Flattening
Dense (200 neurons)
Activation (ReLu)
Batch normalisation
Dense (2 neurons)
Activation (Softmax)

16 / 24



e+/e− discrimination results with ML

1D

104 events
Visible energy:
2MeV
Position:
(0, 10, 0) m
Running time:
17min
Accuracy:
0.93

3D

103 events
Visible energy:
2MeV
Position:
(0, 10, 0) m
Running time:
115min
Accuracy:
0.90

3D (3 channel)

103 events
Visible energy:
2MeV
Position:
(0, 10, 0) m
Running time:
150min
Accuracy:
0.90

Depending on cut, the derivative method achieves
Accuracy:
∼ 0.90

⇒ Results are very similar for both methods.
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Direction reconstruction

In JUNO ∼ 3% of the emitted light is Cherenkov light.
This opens an opportunity for a direction reconstruction.
Motivation: background suppression for neutrinos of sources with
known location, especially solar neutrinos

No usage of the TTR
Training sample: 100,000
electron events (3MeV) at the
center of JUNO (using detector
simulation)
Validation and evaluation:
10,400 events for every 1Mev
step between 1 and 8MeV
Time of flight correction
Time cut 5.5 ns after time of
flight correction
Usage of known vertex position

[Determination of Supernovae Direction with Reconstructed Positron
Information; DOI: 10.22323/1.244.0067]
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Hit distribution

Not using a CNN because
Edge effects if trying to
parameterize the 3D sphere
to 2D cartesian coordinates
3D CNN would contain lots
of entries with a zero
⇒ massive amount of
memory and running time
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Results

Network PointNet
(see arXiv:1612.00593);
Framework: TensorFlow
Data represented as PointCloud
(PMT positions, hit times)
Implementation based on
Dynamic Graph CNN with
modifications:

No rotation and moving of
input
Reduce output to three
values
Add quadratic normalisation
to output
Cosine function as loss
function
Use Convolution,
MaxPooling and Dense layer
instead of ReduceMax and
fully connected layer 20 / 24

https://arxiv.org/abs/1612.00593


Outlook: Water based liquid scintillator
Applying TTR to water Cherenkov detectors has started:

Accelerator Neutrino Neutron Interaction Experiment (ANNIE) at
Fermilab, one of the first experiments to use Large-Area Picosecond
PhotoDetectors (LAPPDs) + PMTs

Reconstruction works with the ANNIE simulation data.
LAPPDs have a time resolution of ∼ 0.1 ns and a spatial resolution
of ∼ 1mm
Idealised detector completely covered with LAPPDs

Simple Geant4 simulation as proof of principle

First step on the way to reconstruct in
Water based Liquid Scintillator (WbLS).
Ultimate goal: separate Cherenkov and
scintillation light
Possible application to Theia
(see arXiv:1409.5864), proposed
multi-purpose experiment using WbLS and
LAPPDs

[Incom]
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https://arxiv.org/abs/1409.5864


Results ideal detector

Small detector: Cylinder with 1.2m radius and 3m height
Currently treat every hit as LAPPD pixel with time resolution of
0.1 ns.
500MeV Muon from center in (1, 0, 0) direction
Results look like expected; a clear distinguishable track around the
MC truth is visible.

22 / 24



Results ANNIE

ANNIE detector: 1.38m radius, 3.71m height
Used test setup with 145 PMTs (5 different types with time
resolution of about 2 ns and 24 LAPPDs (only 5 in the real
experiment)
5GeV Muon from center in (0, 1, 0) direction
Results prove: different photodetectors with a big variation in time
resolution are difficult to handle.
Less optical coverage reduces the ability to pin down the track.
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Summary

Discrimination
Applying the TTR to low energy events gives discrimination options.
Both e+/e− and γ/e− discrimination yield good results with
conventional cut (90% accuracy for low energies)
ML methods for e+/e− discrimination gives comparable values.

Direction reconstruction
A direction reconstruction using only ML (without TTR) shows first
results.

WbLS and LAPPDs
Ongoing studies in water Cherenkov detectors for future WbLS
applications with first results
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Thank you for your attention!



Backup



LUTs
Precalculate Look Up Tables (LUTs) to reduce computing time.
Photon run time and hit probability (also light scattering) can be
stored in LUTs.
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Network structure

Edge Feature
Transform
Edge Feature
Main Net
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Transform Net

Name Type Output-Shape
tconv1 Conv2D (None, 300, 8, 64)
tconv2 Conv2D (None, 300, 8, 128)
reduce_max Reduce_max (None, 300, 1, 128)
tconv3 Conv2D (None, 300, 1, 1024)
tmaxpool Max_Pool2D (None, 1, 1, 1024)
tfc1 Fully_connected (None, 512)
tfc2 Fully_connected (None, 256)
transform_XYZ/weights MatMul (None, 16)
transform_XYZ/biases BiasAdd (None, 16)
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Main Net

Name Type Output-Shape
dgcnn1 Conv2D (None, 300, 8, 16)
pool1 Max_Pool2D (None, 149, 4, 16)
dgcnn2 Conv2D (None, 149, 4, 16)
pool2 Max_Pool2D (None, 74, 2, 16)
dgcnn3 Conv2D (None, 74, 2, 16)
pool3 Max_Pool2D (None, 37, 1, 16)
dp1 Dropout(0.5) (None, 37, 1, 16)
flatten1 Flatten (None, 592)
local1 Dense (None, 320)
local2 Dense (None, 160)
local3 Dense (None, 80)
dp2 Dropout(0.5) (None, 80)
prediction/dense Dense (None, 3)
prediction/l2_normalize L2 normalisation (None, 3)
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