

Event identification in the **NEXT** experiment using CNNs

J.M. Benlloch-Rodríguez¹, P. Ferrario², J.Renner¹, M. Kekic¹ (NEXT Collaboration) ¹IFIC/Universitat de València ²DIPC/Ikerbasque

NiEl&TTexperiment

Cospokespersons: D. Nygren J.J. Gomez-Cadenas

Neutrino Experiment with a Xenon TPC

- Next-WHITE (NEW) operating a 5 kg-scale demonstrator at the Canfranc Underground Laboratory (LSC)
- To be commissioned in 2020: 100 kg Xe, enriched to 136 Xe (90%)

Neutrinoless double beta decay

Essential: 1. Good energy resolution

Neutrinoless double beta decay

Background identification

At the end of the track the deposition of the energy increases - Bragg peak (blob):

- Signal : 2 blobs
- Background : 1 blob

Background identification

At the end of the track the deposition of the energy increases - Bragg peak (blob):

- Signal : 2 blobs
- Background : 1 blob

Previous study

Initial Monte Carlo-based study: arXiv:1609.06202

	Signal Events		BG Ever	nts (²⁰⁸ Tl)	BG Events (²¹⁴ Bi)	
Cut	$2 \times 2 \times 2$	$10 \times 10 \times 5$	$2 \times 2 \times 2$	$10 \times 10 \times 5$	$2 \times 2 \times 2$	$10 \times 10 \times 5$
(Initial events)	1.0	1.0	1.0	1.0	1.0	1.0
Energy	7.59×10 ⁻¹	7.59×10 ⁻¹	2.27×10^{-3}	2.27×10^{-3}	1.42×10^{-4}	1.42×10^{-4}
Fiducial	6.71×10 ⁻¹	6.68×10 ⁻¹	1.19×10^{-3}	1.17×10^{-3}	8.62×10 ⁻⁵	8.54×10^{-5}
Single-Track	3.75×10^{-1}	4.79×10 ⁻¹	7.90×10^{-6}	1.81×10^{-5}	3.84×10 ⁻⁶	8.75×10^{-6}
Classification*	3.23×10 ⁻¹	3.67×10 ⁻¹	7.70×10^{-7}	2.41×10 ⁻⁶	2.90×10 ⁻⁷	9.59×10 ⁻⁷
Classification (DNN)	3.23x10 -1	3.67x10 -1			1.80x10 ⁻⁷	8.22x10 ⁻⁷

But now we have the data **measured** in our detector

Data energy spectrum

Calibration with ¹³⁷Cs and ²²⁸Th sources Achieved <1% Resolution at FWHM near Q_{BB}

Proof-of-concept with e⁺e⁻ track

Event example

Voxelized hits

Reconstructed hits

Classical approach

- 1. Find the track based on graph theory
- 2. Identify track extremes
- 3. Calculate energy inside the blobs

Classical approach

Geant4 Monte Carlo:

(left) 2.44 MeV gammas from ²¹⁴Bi decay, (right) 0vßß events

DNN approach

Feed Voxels directly to a Neural Network!

Original Image published in [LeCun et al., 1998]

0	0	0	0	0	0	0	1	3	1		
0	1	1	1	1	0	0	3	2	3		
0	1	0	0	1	0	0	1	3	1		
0	1	1	1	1	0	0	Feature map				
0	1	0	0	1	0	0					
0	1	1	1	1	0	0					
0	0	0	0	0	0	0					
Input: black and white image											

DNN details

We use random rotations and shifting on-the-fly to avoid overfitting, as well as well L1 weight regularization and dropout. The network runs around 20 epochs. Software : Keras with Tensorflow backend.

Dataset for training

Construction of MC training sample:

- 1) NEXUS 'true' Geant4 hits
- 2) RECO reconstructed hits
- 3) FRAMING and VOXELIZATION : voxels of dimension 5x5x5 mm³ the center of the image is the barycenter of the event
- 4) Event energy normalized to 1 (the network has no information of the event energy)
- 5) Around 60 000 balanced signal/background events

Evaluation metrics

1. AUC-ROC* : Degree of distinguishability between classes – higher is better

True Negative rate
$$(\frac{\text{rejected background}}{\text{total background}})$$
vsTrue Positive rate $(\frac{\text{accepted signal}}{\text{total signal}})$

2. Figure of merit :
$$\frac{\epsilon_{sig}}{\sqrt{\epsilon_{bck}}}$$
 – higher is better

The sensitivity to the half-life of the $\beta\beta0\nu$ decay is proportional to f.o.m in background-limited experiments (arXiv:1010.5112v4)

RESULTS MC : True labels

te the NEXUS vs RECO efficiency

92% signal efficiency; 8% background acceptance 90% signal efficiency; 10% background acceptance

We use **true** nexus information to evaluate the performance of the network.

- 1. Fit the histogram to gaussian (signal) and exponential (background)
- 2. Integrate to calculate total number of signal and background N_{bck}^0 , N_{sig}^0

3. Apply $i^{
m th}$ cut on DNN prediction and calculate $N^i_{bck}, \ N^i_{sig}$

$$\epsilon^{i}_{sig} = \frac{N^{i}_{sig}}{N^{0}_{sig}} \quad \epsilon^{i}_{bck} = \frac{N^{i}_{bck}}{N^{0}_{bck}} \quad f.o.m = \frac{\epsilon^{i}_{sig}}{\sqrt{\epsilon^{i}_{bck}}}$$

24

Not quite matching...

26

Distribution of predicted signal (threshold cut 0.8)

Solution:

Training a network where signal is a positron-electron pair with the energy ~ 1.59 MeV

The network cut out some of the higher energy events; probably similar to one track cut of classical analysis.

85% signal efficiency; 15% background acceptance

READY FOR THE DATA

RESULTS DATA vs MC

85% signal efficiency; 15% background acceptance84% signal efficiency; 16% background acceptance

RESULTS DATA vs MC

Different networks comparison

Data only slightly improved with different labeling...

RESULTS DNN vs Classical

arXiv:1905.13141 (2019)

Significant improvement!

Just for fun: t-SNE

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a nonlinear technique for dimensionality reduction, it preserves local distances.

Journal of Machine Learning Research 9 (2008) 2579-2605

Next steps

- Use similar analysis on NEXT-100 simmulations.
- Try SparseConvNets : PyTorch SparseConvNet library by Facebook: arXiv:1706.01307v1
- Try DNN for reconstruction?

- Look for double escape peak close to $Q_{\beta\beta}$ peak
- Understand differences between MC and data!

Next steps

- Use similar analysis on NEXT-100 simmulations.
- Try SparseConvNets : PyTorch SparseConvNet library by Facebook: arXiv:1706.01307v1
- Try DNN for reconstruction?

- Look for double escape peak close to $Q_{\beta\beta}$ peak
- Understand differences between MC and data!

Thank you!