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Common aspects of machine learning for JUNO

Conclusions
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Machine learning pipeline

FCNN - Fully Connected Neural Network
CNN - Convolutional Neural Network
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Aspect Nel: Input data preparation

Step 1: original info for each PMT: .. . pof the PMT OSIOS o
charge, 1st hit time, mean hit time,
PMT positions, o (hit time)
Step 2: event on the ¢ — 0 map of the PMT positions

Sinusoidal projection: squeeze ¢-bins

Step 3: avoid event splitting by rotating the image
Step 4: restoration of the uniform density of PMTs:
squeezing pixels in ¢-direction
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Aspect Ne2: Reduction of data dimension
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Convolutional Neural Network (CNN)
Applying a set of filters (kernels) to extract feature maps
Non-linear down-sampling (pooling) to reduce the map size
Alternate use of convolutional and pooling-layers
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Position & energy
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Position reconstruction: some first attempts

Convolutional neural network

@ Project charge and time data of all PMT’s using
the Mollweide projection

@ 4 convolutional, 4 pooling and 2 FC layers
@ Error in absolute distance is = 11cm (5 MeV, 140k events)

@ Training time is huge, but prediction is fast

Feedforward neural network

@ Inputs are mean First Hit Time, total number of PE and
3 cartesian coordinates retrieved from charge center method

@ Error in absolute distance is = 15 cm (5 MeV, 140k events)

@ Training is very fast
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Position & energy
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Position reconstruction: CNN architecture

How to avoid network degradation at the last (deep) layers?

weight layer

X
identity

@ Let’s define the residual function F(x) = H(x) — x

o reframed H(x) = F(x) + x, where F(x) and x represents the stacked
non-linear layers and the identity function (input=output)

@ Easy to optimize F(x)
@ Hard to optimize H(x) (direct mapping from x to y)
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Position

OO@000000000

Position reconstruction: CNN architecture

@ Usage of residual blocks instead of “plain” connections!
@ 50 convolutional layers, 25 million parameters

e Batch Normalization layer after each convolutional one
@ RelLU activation after each Batch Normalization layer

@ He Normal (He-et-al) weight initialization?

@ L2 Regularization

e Adam Optimizer (without learning rate decay), or Stochastic
Gradient Descent with Nesterov Momentum3and exponential
learning rate decay (decay rate=0.9, decay steps=420000)

IHe K. et al. Deep residual learning for image recognition, 2016

2He K. et al. Delving deep into rectifiers: Surpassing human-level performance on
imagenet classification, 2015

3Sutskever I. et al. On the importance of initialization and momentum in deep

learning, 2013
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Position & energy
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Position reconstruction: input data

1 million e+ events

Continious in [0, 10] MeV

Events uniformly distributed in the detector
Training: 900k events

Testing: 100k events

® 6 6 o6 o ¢

Validation: 5k events for each discrete energy
in{L,2,3,4,5,6,7,8,9,10}MeV

Sinusoidal projection, 256x128, 2 channeled images
(charge and time)
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Position & energy
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Position reconstruction: some results

o of (Rrec — Rirue) @ 1MeV is 5.1cm

6.0

# # 4 wn
o w [=] w
{ ]

Sigma of (R_rec - R_true) [cm]

w
n
L

3.0 T T T

Total energy [MeV]

Gromov M. (SINP MSU, JINR) ML for JUNO



Position & energy
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Energy reconstruction: input data

Input (features):

Npe. total number of photo electrons

NpMmT 2. pee.
Tee, Zee Charge center —— NPM > X
ten mean first hit time

(counted from the time of the first PMT hit)

Dataset: positrons uniformly distributed in CD + dark noise
Q@ Eyn : 0 — 10 MeV,
900k/100k - training/validation
@ Eun:0,1,...,10 MeV,
11x10k - testing
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Position & energy
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Energy reconstruction: two ML techniques

Boosted Decision Trees Deep Neural Networks
(BDT) (DNN)

Deep Neural Network

Hidden Layer 1 Hidden Layer2 Hidden Layer 3

L *\

Tensor!

Which one is better?
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Position & energy
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Energy reconstruction: resolution

Boosted Decision Trees Deep Neural Network
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@ As good as traditional (JUNO default) methods
e Similar performance, however DNN is little better
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Position & energy
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Energy reconstruction: resolution with TTS

Effect of Time Transit Spread (TTS):

o\‘i 3; VvV TTs=0
=} 2.8; | A TTS=10ns
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(studied only with DNN)
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Position & energy

000000000080

Energy reconstruction: resolution with DN

Effect of Dark Noise (DN):

BDT DNN
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@ DNN suffer less
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Energy reconstruction: BDT vs. DNN*

Boosted Decision Trees (BDT)

Deep Neural Networks (DNN)

Deep Neural Network

Hidden Layer 1 Hidden Layer2 Hidden Layer 3

@ Less accurate

@ Faster **:
Training: several minutes
Reco: 2 seconds/100k events

@ Suffers more from DN

@ Requires less data for training

@ More accurate

@ Slower **:
Training: half an hour
Reco: 15 seconds/100k events

@ Suffers less from DN

* - based on this study

** - tested on regular laptop
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PSD
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Particle identification: motivation

Different particles have different pulse shapes,
this is especially pronounced in the slow component of scintillation
Main detection channel: Inverse Beta Decay (IBD)
Possible e~ /v, o/ discrimination
et/e~ discrimination: a key point to reduce backgrounds (°Li/®He)

Y (511keV)

prompt

(511 keV) prompt Y
intillati Vg
scintillation

P . AN
scintillation =\Z
~Ejin

delayed v (2.2MeV)

issionless thermalization ~ 200 ps emissionless thermalization ~ 200 ps

Small difference in shape and timing (+3 ns for ortho-positronium)
due to the lack of an annihilation signal for backgrounds
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PSD
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e’ /e” discrimination: methods, results and problems

e~ & et events: E\is = 1 — 10 MeV, 100k+100k events, uniform distribution
Sampling: training : validation : test is 80% : 10% : 10%
Time profile: first 400 ns, 1ns per 1 bin

Type 1: FCNN Type 2: CNN
Network structure: Network structure:

@ one simple hidden layer @ 4 layers of 3D convolutions

@ 20 nodes in the hidden layer @ 5 separable 2D conv. layers

@ activation function: RelLU @ activation function: ReLU

o optimizer: Adam (softmax for the output layer)

Input data: 8 time profiles for each e™

Input data: time profile for each e* @ arrival time & total signal

@ PMT trigger time @ simple ¢ — 6 map:

@ only one time profile 8 pixels, 2x4 map

@ time profile for each pixel
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PSD
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e’ /e” discrimination: methods, results and problems

Type 1: FCNN Type 2: CNN Accuraccy 83.0%

O,
Accuraccy 87 5 A) e+ e- discrimination, events uniform
- . 2000
e+ e- discrimination, events uniform B positron
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1400 BN positron electron
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1200 electron
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0 § w000
E 800
750
8 500
500
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200 i : : ‘
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00 02 04 06 08 10 e+ probability

e+ probability
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PSD
[eYeTe] Yolo]

e’ /e” discrimination: methods, results and problems

Gromov M.

Let’s take a closer look

Type 1: FCNN
Accuraccy 87.5%

model accuracy

— train
test
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Type 2: CNN
Accuraccy 83.0%

model| accuracy

- train

| test

epoch

model loss

train
test
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e’ /e” discrimination: methods, results and problems

Another attempt to perform PSD
Type 3: FCNN with 2 hidden layers with 1200 and 20 nodes
Events are placed in the center
The rest options are the same
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Loss function: cross entropy € = % Z?(yreallog Ypredict)
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e’ /e~ discrimination: comparison Gatti with FCNN

FCNN Gatti’s method for e~ /e™

egatti
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Deterioration of the e*/e™ discrimination with increasing energy
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Muon reco
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Muon reconstruction: motivation

Cosmic muon is one of the major sources of neutrino backgrounds.
To efficiently veto these backgrounds,
we need to reconstruct the trajectory of muon.

Traditional approach: Fastest Light Model (FLM)
Problems:

o Reflection and refraction of optical photons, latency of the light
scintillation and time resolution of the PMTs may affect the
precision of this method. Complex optical model.

@ Additional corrections to the First Hit Time (FHT) bias are
necessary for these methods.

Machine learning approach: Reconstruction with CNN
@ No need to consider optical model

@ Without any corrections
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Muon reco
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Muon reconstruction: input and output data

As a supervised deep learning problem,
we need plenty of labelled training samples
2 maps as inputs: PE number (Q) and First Hit Time (T)
320k simulated muon events

e Uniform randomly choosing injecting point and direction
on the surface of the detector

@ Labeled with injecting point and direction from simulation

@ Using the mean energy of the muons across the detector
(200 GeyV, fixed)

@ Gaussian uncertainty of time measurement, TTS= 3ns
@ Electronic simulation is not included

e Divide into 300k training set, 20k testing set

6 outputs: injecting point (x¢,y0,20), injecting direction (pxo.pyo,p0)
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Muon reco
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Muon reconstruction: network structure

Final network structure is a result of search for
an optimal network architecture

2 convolutional layers
Convolutional filters per layer: 16
Convolutional filter size: 5x5
Pooling filter size: 5x5

Activation function: RelLU

e Optimization algorithm: gradient descent optimizer,
batch_size = 128

e FCNN part: 3 hidden layers, 1024, 512, 256 nodes
e Number of the network parameters: 23M

® 6 6 o o

@ Loss Function: L1
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Muon reco
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Muon reconstruction: comparison FLM with CNN

The performance of the CNN method is I i
comparable to the performance of the FLM muon 4D=dr-t

reconstruction method

L —— CNNs E —— CNNs
08|~ first light model : first light model
5 0 T 10
s [ E L
E o ++
2o § ot + 4t
? R HL et e e
L . rol
0. I PR i & 101
9 i i ; B
4 10 12 14 16 & T2 14 16
Dinc [M] Die [m]

e The deflection angle « is less than 0.4 degree
e The distance error AD is smaller than 1cm
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Muon reco
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Muon reconstruction: time costs

Method Hardware  Time per event Comments
[ms]

1. FLM one CPU ~ 5000

2. CNN one CPU ~ 950 ~ 5x speed up vs 1

(batch size=1) (E5-2650 v4)

3. CNN one GPU ~9 ~ 500x speed up vs 1
(batch size=1) (Tesla V100)

Batch size means the number of events reconstructed at the same time

Reconstruction speed is greatly improved with the CNN approach
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Lowering the multi-messenger trigger

Ultimate technical goal:
set the multi-messenger (MM) trigger as low as possible
Benefits:

e Significantly increase number of detected events in case of
supernova

e Several times more v — p Elastic Scattering (ES) events
e Observation and research of the neutronization burst
@ SN can be found 50 ms earlier (small bonus)

Situation: sinking into a sea of dark noise and ''C radioactivity
e 20-inch PMT dark noise rate ~ 50 kHz per PMT
e C radioactivity (optimistic case): ~ 100 kHz for 20 kton LS
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JUNO MM trigger: dark noise rejection in 2D parameter space

Idea: Physics-like hits will cluster in hit time & location of hit

T A time _window — atknoise I:> A 2-D discriminator is considered
ousE- n_hits —Physics
oosf- 11 ; g%
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JUNO MM trigger: dark noise rejection with machine learning

Deep learning techniques
= Time window: 200 ns

210E
= Input parameters: P — Dark Noise
= Location of hit PMT (&, cos6) wg — Physics
= Hit time for each hit F
= Nhits e
.
10
1: P IS B S IN B RS R
0 0.2 04 06

8 1
Prob of Physics

Baseline: rejecting 99.85% dark noise,
While retaining 71% physics
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JUNO MM trigger: comparison of different approaches

Filtering efficiency when rejecting 99.85% dark noise

Physics: 14C

Retain 100%
efficiency at
~50 keV

Still retain
~20%
efficiency at
~20 keV'!

Everything needs to be calibrated with real datal!
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General problems and recommendations

Problems:
e Input data sufficiency:
Vep ~ 23200 m3,
if only 1 event per single cubic volume (10x10x10 cm?)
= 23.2 - 10° events required
e Input data source: simulation, calibration, real data after
special offline analyses?
Energy and position dependencies
Electronic simulation influence
Dark noise impact
o Difficulties on boundaries
Recommendations:
e Neural network structure optimization
e Input data should be divided into 3 sets:
training, validation, test

Gromov M. (SINP MSU, JINR) ML for JUNO

e 6 ¢



Conclusions

e Machine learning works!

Can be 500x speed up in comparison with traditional
approaches

Easy to achieve rough results, hard - accurate ones
Reduction of data dimension is a challenge
Required solid and sufficient dataset for training
Loss functions without spikes for all data subsets

Consideration other methods:
Boosted Decision Trees (BDT) &
General Regression Neural Network (GRNN)
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Thank you for your attention!
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