# Machine Leaning Apllication in Borexino

#### Yu Xu IKP2 FZJ



Mitglied der Helmholtz-Gemeinschaft

### **The Borexino Detector**

- 278 ton liquid scintillator
- 2212 PMTs
- 550 hit PMTs/MeV
- Available information:
  - The position of each PMT
  - The photon hit time of each PMT



# **Machine Learning Application**

• Pulse Shape Discrimination (PSD)

• Vertex Reconstruction



# **Pulse Shape Discrimination**

Principle: The different time profile for different kinds of particles  $\sum_{i=1}^{n} \frac{w_i}{\tau_i} \exp^{-t/\tau_i},$ P(t) =3 i= 2 ß 3.2 25 73.4 500  $\tau_i$  [ns] 0.86 0.02 ß 0.05 0.06 W; 3.2 13.5  $\tau_i$  [ns] 63.9 480 α 0.58 0.18 0.14 0.09  $W_i$ 

Samples: Bi214 - Po214 cascade decay events

- Bi214: beta samples
- Po214: alpha samples



#### MLP variable

- Developed on ROOT TMVA package
- Extract 14 variables from the time profile
- Use the selected variables as input

#### FCN variale

- Developed on pytorch
- Neural network structure
- Directly use time profile as input



#### Performance

- On Bi214 Po214 test samples, both two methods accieve better than 99.5% accuracy
- FCN variable more stable on beta
- MLP variable more stable on alpha

alpha/beta discrimination, NN 10 Bi214 (β) 0.8 **FCN** beta prob 0.6 0.4 Po214 (α) 0.2 alpha 0.0 beta 800 1000 1200 1400 200 400 600 1600 charge

alpha/beta discrimination, TMVA method



#### What if we train on MC?

- We train the network on MC data, and apply the model on Bi-Po samples
- The performance become a little worse
- The difference of two models: less than 0.1%





#### **Vertex Reconstruction**

- The vertex of the event can depend the hit times of PMTs
- The hit times on each PMT are available for us
- Thus, we can construct the machine learning model based on the PMT hit time

- The model train on MC data
- Energy range: 0.11 2.94 MeV
- Genarate 700k events in total
- 650k events for train, others for test



### Network

- Input image: first hit time on each PMT
- The PMTs are arranged on theta and phi
- The size of the image: 64x64



filters=64

256-d

1x1, 64

3x3, 64

1x1, 256

relu

relu

relu





### **PMT** hit time distribution



# **Train Strategy**

- Loss function: MSE
- Optimizer: Adam
- Init learning rate: 0.003
  - train 50 epoch
- learning rate divide by 3 every 10 epoch

Save the best group of parameters in all 50 epoch



#### Performance

Deep Learning (DL) can reconstruct similar result with Borexino's traditional reconstruction (LNGS)



|        | Deep Learning |                         |        | LNGS      |                    |  |
|--------|---------------|-------------------------|--------|-----------|--------------------|--|
|        | mean (cm)     | std (c                  | cm)    | mean (cm) | std (cm)           |  |
| X      | 0.48          | 7.42                    |        | -0.32     | 7.72               |  |
| у      | 0.38          | 7.35                    |        | -0.016    | 7.68               |  |
| Z      | -0.37         | 7.58                    |        | -0.41     | 8.12               |  |
| 3000 - | Deep Le       | earning Reco<br>osition | 3000 - |           | Deep Learning Reco |  |
| 2500 - |               |                         | 2500 - |           |                    |  |
| 2000 - |               |                         | 2000 - |           |                    |  |
| 1500 - |               |                         | 1500 - |           |                    |  |
| 1000 - |               |                         | 1000 - |           |                    |  |
| 500 -  |               |                         | 500 -  |           |                    |  |
|        |               |                         |        |           |                    |  |

#### **Performance vs Radius**

0.01

×0.005

-0.005

- Bias increase as radius increase
- DL result and LNGS have similar performance on z axis
- DL result and LNGS have opposite trend on x axis



- Resolution becomes better as radius increase
- DL has better performance for R>3 m, especially at z axis



# **Performance vs Energy**

- Bias seems to be stable with energy
- DL result and LNGS have similar performance on z axis
- DL result and LNGS have opposite trend on x axis
- For energy < 0.5 MeV, LNGS has better performance
- For energy > 0.5 MeV, DL has better performance



# **Borexino Calibration**

JINST 7 (2012) P10018

| Source                             | e Type E[MeV] P |               | Position              | Motivations       | Campaign |  |
|------------------------------------|-----------------|---------------|-----------------------|-------------------|----------|--|
| <sup>57</sup> Co                   | γ               | 0.122         | in IV volume          | Energy scale      | IV       |  |
| <sup>139</sup> Ce                  | γ               | 0.165         | in IV volume          | Energy scale      | IV       |  |
| <sup>203</sup> Hg                  | γ               | 0.279         | in IV volume          | Energy scale      | III      |  |
| <sup>85</sup> Sr                   | γ               | 0.514         | z-axis + sphere R=3 m | Energy scale + FV | III,IV   |  |
| <sup>54</sup> Mn                   | γ               | 0.834         | along z-axis          | Energy scale      | III      |  |
| <sup>65</sup> Zn                   | γ               | 1.115         | along z-axis          | Energy scale      | III      |  |
| <sup>60</sup> Co                   | Y               | 1.173, 1.332  | along z-axis          | Energy scale      | III      |  |
| <sup>40</sup> K                    | γ               | 1.460         | along z-axis          | Energy scale      | III      |  |
| <sup>222</sup> Rn+ <sup>14</sup> C | β,γ             | 0-3.20        | in IV volume          | FV+uniformity     | I-IV     |  |
|                                    | α               | 5.5, 6.0, 7.4 | in IV volume          | FV+uniformity     |          |  |
| <sup>241</sup> Am <sup>9</sup> Be  | n               | 0-9           | sphere R=4 m          | Energy scale + FV | II-IV    |  |
| 394 nm laser                       | light           | -             | center                | PMT equalization  | IV       |  |

~300 calibration points in total Gamma sources mainly on x-z plane Radon runs distributed in the whole volume

Positions of all runs -500 cm 400 Inner Vessel nominal radius 300 200 100 0.0 -100 -200 222Rn + 14C Am-Be (n) 203Hg -300 57Co 139 Ce 85Sr -400 85Sr+65Zn+60Co 54Mn+40K -500 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 distance from z axis (m)

Mitglied der Helmholtz-Gemeinschaft

### Performance on calibration data

- Test the model on Gamma runs
- The performance of DL become a little worse, but still similar to LNGS results
- Do some finetune with calibration data on the model, but result not positive





04



# **Summary and Discussion**

- In Borexino, we have good results on PSD analysis with machine learning method
- Deep learning method can reconstruct vertex quite well on mc data
- The model trained on mc data show the similar but worse performance on the calibration data
- We are trying to use calibration data to do the fine tune, so the model can be more suitable for real world



## **Back Up**



Mitglied der Helmholtz-Gemeinschaft

#### **Performance correct to 1 MeV**

|                       |     | Deep Learning |          | LNGS      |          |
|-----------------------|-----|---------------|----------|-----------|----------|
| Energy correct to 1   | MeV | mean (cm)     | std (cm) | mean (cm) | std (cm) |
| distance * sqrt(Evis) | x   | 0.55          | 8.44     | -0.39     | 8.78     |
|                       | у   | 0.45          | 8.35     | -0.027    | 8.71     |
|                       | z   | -0.42         | 8.64     | -0.48     | 9.23     |

