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Typical Event
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Typical Event
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Traditional Reconstruction

550 us of Far Detector data
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Traditional Reconstruction

Zoom in on beam window, group hits by space and time
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Traditional Reconstruction

Use Fuzzy K-Means Clustering for individual particles, creating prongs
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Fuzzy K Means
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Create Prongs:

-In each of the two detector
views, compute distance
between hit and center of
existing clusters

-Add hit if overall distance is
minimized

3D Matching:

-Look cumulative energy as a
function of path length along
prong

-Match is based on Kuiper’s
Test
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Single Particle Identification

® Single particle identification (H, e, p*,TT*,Y) is important for more in-depth physics,
including (but not limited to):
= Better, more robust energy reconstruction

= Enabling cross-section measurements of exclusive final states

® A convolutional neural network (CNN) could classify the particles

® Current architecture is based on GoogleNet and uses a 4 tower siamese structure that
uses both the prong and event views (the “context”)

® Soon to be published in PRD:

Context-Enriched Identification of Particles with a
Convolutional Network for Neutrino Events

FERMILAB-PUB-19-258-PPD

NOVA Publications Page

June 2019
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https://novaexperiment.fnal.gov/publications/

Particle Signatures

u e LT
"""""" Long and straight, consistent dE/dx
€ “eva... . : : : .
LT Shower, usually associated with hadronic activity
. = T Shower, usually associated with pion, and
L produced in pairs from m©
- Generally short track with large energy deposit
P - at end
TUH-  eessvess Generally short track with consistent
dE/dx
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Context-Enriched Prong CNN Architecture
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Training Dataset

® Training dataset includes prongs and full
interactions

® Total dataset size is 2.95 million events

® |abels are based on which particle
deposited the most energy into the prong

® A containment cut is applied to ensure
we only train on fully contained events

® 5 meter cut is applied to reduce image
size and increase network stability. >95%
of all prongs over this length are muons.

® VWe also applied a selection criteria on
the purity of the 3D prong to balance a
representative sample of realistic input
data with clear identities of the prong

Clusters [Arb. Units]
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Y
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S

0.4 0.6 0.8
Cluster Purity

Purity - The fraction of the energy contained in a cluster which comes from the particle it is associated
with
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C
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https://indico.io/blog/visualizing-with-t-sne/
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Overall Performance

Proton

Pion
©
4b)
©
@ Muon
)
0p)
Gamma

Electron 0.90

Electron Gamma Muon Pion Proton

True

The diagonal
shows the efficiency for each category and the off-diagonal
shows how events are misidentified.

Selected = Particle with highest PID score
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What does context contribute?

NOvVA - FNAL E929

Run: 10713/4
Event: 500244 / --

Particle Only

Far Detector Data
UTC Tue Jan 27, 2015
05:48:26.091133824

With Context

NOvVA - FNAL E929

Far Detector Data

Run: 10713/4 UTC Tue Jan 27, 2015
Event: 500244 / -- 05:48:26.091133824

Our hypothesis is that providing context improves our network’s accuracy and purity

* To compare, train a network with prong views as the only input, reducing 4 towers to 2

Use the exact same dataset, same hyperparameters

 Comparing the models will give us insight into what context improves on

Ryan Murphy | E INDIANA UNIVERSITY
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Context provides clarity

Electron or Gamma?

Ryan Murphy | Eﬂ INDIANA UNIVERSITY |5 Reco & ML in vV Experiments | Hamburg, Germany



Context provides clarity

Electron or Gamma?

e Gamma is much more easily identifiable in this example with the context of another photon and pion.

e Gap between vertex and photons also helps

* Prongs can also share hits and overlap each other, which
may make it indistinguishable without the context information

Ryan Murphy | Eﬂ INDIANA UNIVERSITY 16 Reco & ML in vV Experiments | Hamburg, Germany



Context-Enrichment
Improvement

0.15
Proton -0.01 -0.05 -0.01 -0.02 0.00
0.1
Pi -
ion 0.00 0.00 0.01 0.01 1005
3 Context-
5 Enriched
@® Muon 0.00 0.00 0.03 -0.01 0.00 —0 . .
Yo Minus Particle
w Only
—-0.05
Gamma -0.03 -0.02 -0.08 -0.01
-0.1
Electron 0.04 -0.05 0.01 0.01 0.00 I
Electron Gamma Muon Pion Proton -0.15

True

e Context increases accuracy for almost every label, but
especially improves on non-leptonic labels
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Context-Enriched

Improvement

1r T - = |
L -
_ ’
0.8 1 1 .
> i
(&)
C o
o6 1 1 .
= | | Muon Classifier Proton Classifier |
'-'_J i — With Context 1 = \With Context == \Nith Context == \With Context 1 = With Context
g 0.4F = = No Context + = = No Context = = No Context = = No Context + = = No Context -
S |
0.2} T T T .
[ 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 1 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 1 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1
% 0.2 04 06 0.8 02 04 06 038 02 04 06 038 02 04 06 0.8 02 04 06 08
Background Efficiency Background Efficiency Background Efficiency Background Efficiency Background Efficiency
Comparison Metric Network Electron Photon Muon Pion Proton
Background Efficiency Particle & Context 3.2% 14.5% 1.1% 16.1%  9.4%
for 90% Signal Efficiency | Particle Only 8.0% 24.6% 22% 22.4% 12.1%
ROC Inteeral Particle & Context | 0.983 0951 0992 0944 0.969
ntegra
s Particle Only 0.967 0.910 0.986 0.920 0.960
Largest Score Particle & Context 90% 75% 87% 54% 89%
Selection Efficiency Particle Only 86% 74% 84% 43% 89%
Largest Score Particle & Context 93% 75% 93% 65% 81%
Selection Purity Particle Only 90% 64% 92% 60% 77%

 Context increases accuracy and purity for almost every
label, but especially improves on non-lepton labels

Ryan Murphy | Eﬂ INDIANA UNIVERSITY
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Use case #I1: 119 Mass Peak

the energy response of our
detectors.

® | ook for 10 =2y

pid > 0.75).

efficiency.

Ryan Murphy | m INDIANA UNIVERSITY

Data-driven method to gauge

Can compare old method that uses
traditional reconstruction methods and
new method that uses Prong CNN (Y

Using Prong CNN lets us decrease
backgrounds by 60% at the same

1500

Clusters

500

1000

Neutrino Beam

NOVA Preliminary
1 I 1 1 I 1 I I 1

— 8.06x10%° POT —

—4— Near Det Data
—— MC =° Signal
B MC Background

' g—é#

|

08 0.85 0.9 0.95 1
Photon PID
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Use case #I1: 119 Mass Peak

NOVA Preliminary

NOVA Preliminary
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M, (MeV)

Old Method

20

l L]
—4— Near Det Data
—— MC =° Signal
B MC Background

Data p: 135.1 + 0.6 MeV
Data o: 32.1+ 1.0 MeV

lllllllllllllllllll

M, (MeV)

MC w: 137.6 + 0.2 MeV
MC o: 30.4 = 0.4 MeV
200 300 400 500

New Method with Prong CVN
TT0 mass ~ 134.96 MeV
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Use case #2: Ve Energy Estimator

® Used in selection of EM-like prongs for
energy estimator.

\ = Electron ID + Photon ID

. Hadronic Score =1 -

---.F-:.--..-....I-u _
"AER = if:

> Hadronic Score

Sum together energy of all EM-like prongs

Hadronic Shower Energy:

The difference between total event energy

and the EM-like prong’s total energy

Hadronic Energy = Total Energy - EM-like Energy
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Use case #2: Ve Energy Estimator

Average True v E

e Each binis filled in by the
true average energy

Hadronic Energy (GeV)

A quadratic fit is used to
estimate the ve energy:

0 ! ! ! ] | ] 1 1 1 O

0 0.5 2 2.5

1 15
Eve = A'"Eem + B*Enap + C*'E2em + D*E2HAD EM Shower Energy (GeV)
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Use case #2: Ve Energy Estimator

Traditional Reco

e Each bin is filled in by the f:_o‘j;_ﬁ—."_—*_ -
true average energy oot B
* A quadratic fit is used to B TP B
estimate the ve energy: Traditional Reco w/ Prong CNN
Eve= A*EEI\/I + B*EHAD + C*EZEM + D*EZHAD Z:;‘%: I1oo
* Energy resolution is 11%, Bor | i N
bias across energy is pd o
redUCed Z.:;—mIl””ll”Il””ll”IlImlllllllmlmlllm |

0] 0.5 1 1.5 2 25 3 3.5 4 45 5
v True Energy [GeV]
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Improvement: Balanced
Datasets

Unbalanced Dataset Composition Balanced Dataset Composition

Il True Labels

0.30 4 EEE True Labels 0.200 4

0.25 A 0-175

0.150 -

o
N
o

0.125 -

0.100 -

o
=
wu

Fraction of Labels

0.075 -

Fraction of Labels

0.10 A
0.050 A

0.05 ~ 0.025 A

0.00 - 0.000-

e Makes our neural networks focus equally on all particle types

* F1 score (harmonic mean of efficiency and purity) increased by ~2%
Efficiency * Purity

Efficiency + Purity
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@ Summary

AN~

* Context adds significant improvement to our particle
identification CNN

* A neural network based particle identifier improves NOvA’s
physics analysis capabilities through many channels

* NOVA continues to host a rich deep learning program with

many more improvements in the pipeline
m u

novaexperiment.tnal.gov
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Back ups



Instance segmentation

Region Proposal Object Identification

Extract
maximum Mask R-CNN [3] is one
. implementation of in-
OSSlble stance segmentation,
‘ ? ) Proceeds In several

5 Inrormation stages:
& 1) The network starts by
E from dll scanning thousands of ~ 4) Ea_ch corrected anchor is classified as one qf ﬁve.
S 1mage anchors, shown here  particle types. After, per-class suppression is applied
§ g ' for just a single point.  to anchors that found the same object.
= .
2 2) Each anchor s as- ClUSteng
% Above: The Instance seg- signed an object score.
E mentation of a street The highest SCore an-
% Seene. chors are shown here,
5

Below: The true instance
segmentation of the
numu CC interaction

3) Object anchors have

from the previous section a correction applied to
showing a muon decay to their position and
amichel electron and a size.

proton at the vertex.

5) Finally, each pixel in an anchor is assigned a mask
score to cluster the hits into individual particles.

Taken from Micah G.’s
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Training Dataset Full Details

® Training dataset includes prongs and full interactions
® Total dataset size is 2.95 million events

® Prongs use a Kuiper test to match XZ and YZ views. Any prong not matched is not used in
training

® The spatial and temporal resolution of the detector, along with the inefficiencies of vertex finding
and separating overlapping particles effect the quality, completeness, and purity of the prongs

® To make sure there is reasonable data in our training data, we apply a containment cut to ensure
we only train on fully contained events

® 5 meter cut is applied to reduce image size and increase network stability. >95% of all prongs
over this length are muons. Easily identifiable via traditional reconstruction methods

® We also applied a selection criteria on the purity of the 3D prong to balance a representative
sample of realistic input data with clear identities of the prong
Muons, photons, and electrons are cut at 0.5 and protons and pions are cut at 0.35
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Kuiper’s Test

X (Radians)
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Efficiency vs PID Score
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Selected

Purity Plots

4 view - 2 view 4 View Purity Matrix
0.15
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©
o
©
Muon 0.00 0.00 0.01 -0.01 0.00 —0 @® Muon
o
dp)
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Electron 0.03 -0.03 0.00 0.00 0.00 Electron 0.93
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Clusters [Arb. Units]

3D Prong Eff'aency & Purity

Area Normalized
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Cluster Efficiency Cluster Purity

Efficiency - The fraction of energy depositior})s:.; from the particle associated with a cluster
which are contained by the cluster
Purity - The fraction of the energy contained in a cluster which comes from the particle it is

associated with
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Prong PID Distributions

Particle with Context
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More Comparison
Metrics

Comparison Metric Network Electron Photon Muon Pion Proton
Background Efficiency Particle & Context 3.2% 14.5% 1.1% 16.1%  9.4%
for 90% Signal Efficiency | Particle Only 8.0% 24.6% 2.2% 224% 12.1%
ROC Integral Particle & Context | 0.983 0.951 0992 0944 0.969
Particle Only 0.967 0910 0.986 0.920 0.960
Largest Score Particle & Context 90% 75% 87% 54% 89%
Selection Efficiency Particle Only 86% 74%0 84%  43% 89%
Largest Score Particle & Context 93% 75% 93% 65% 81%
Selection Purity Particle Only 90% 64% 92% 60% 77%
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The NOVA Experiment

NuMI Off-axis Ve Appearance
* NOVA is a long-baseline
neutrino oscillation

experiment

e Observes neutrinos from
NuMI| beamline at
Fermilab

* Two functionally identical
detectors, situated |4
mrad off axis, 810 km

apart

Fermilab

e Near Detector is 300
tons, located at FNAL

e Far Detector is 14 ktons,
located in Ash River, MN

36 Reco & ML in vV Experiments | Hamburg, Germany
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NOVA Physics Program

Disappearance channel (Vy-Vy & Vu-Vy)

Normal hierarchy Inverted hierarchy
. v vV
® Measurements of sin2(023) and Am?23; e ——s Qqul;!l
V1 I
— — vy 2
Appearance channel (Vy-Ve & Vu-Ve) Amg,
) . Ami,
® Determine V mass hierarchy A__"2
e —
® Octant of 023 (> or < 45°) | 1
? iml2ightest 7n]2ightest§ ?
e Constrain Ocp i _ .

Vel VA Vm

Non Oscillation Physics

® Cross sections with NOVA ND
® Supernova neutrinos
® Sterile Neutrino Search

® Plus more!
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NOVA Event Display
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NOVA Event Dis

play
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Traditional Reconstruction

1000 2000 3000 4000 5000

Lo b b v bl

1000 2000

100(
z (cm)
NOvVA - FNAL E929 . ) NOVA - FNAL E929
Run: 22357 /1 Run: 22357/ 1
Event: 16934 / - Event: 16934 / --
UTC Sun Feb 28, 2016 300 300 200 UTC Sun Feb 28, 2016
14:44:25.490674976 - i ' 14:44:25.490674976

T Ty

T

[ IR ST SR AR

100( 1004
z (cm) z (cm)
NOVA - FNAL E929 ) NOVA - FNAL E929

Run: 22357 /1 B = . Run: 22357/ 1
Event: 16934 / -- Event: 16934 / --
UTC Sun Feb 28, 2016 =

) ) 3 UTC Sun Feb 28, 2016
: - - 10 - 44
14:44:25.490674976 q (ADC) 14:44:25.490674976

Group hits together to form a cluster Find vertex of interactions and produce prongs

for each individual particle
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In the convolutional layers, kernels are
used to extract different features and
create feature maps

In pooling layers, feature maps are
downsampled to help computation
time. Also helps access different size

features

Kernels change through training to
produce more useful feature maps

Fully connected layer correlates feature
maps to labels. Provides a 0-1 output
for each label, roughly probability of

each label

Ryan Murphy | Eﬂ INDIANA UNIVERSITY

Kernels I ‘/ I
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Extracting Features -

In the convolutional layers,

kernels are used to extract

different features and create
feature maps

The network learns from
correlations between different
feature maps for each type of

event

AEIESE NS
i W LN L R B TR

S e[
TR
| o b R [T
Qe R T [ [ [
= | EL R
S el RS

Example of kernels
used for
convolutions

Convolved Feature Maps
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Pooling Layer

These layers
downsample feature
maps in order to reduce
the number of
parameters and
computation needed.
This will help with
overtraining.

Ryan Murphy | m INDIANA UNIVERSITY

15

12

Average Pooling

Pooling
Layer
21] 8 [ 8[12
12[19] 9| 7
811014 | 3
1811219 |10
21|12
18110
Max Pooling

http://cs23 | n.github.io/convolutional-networks/#pool
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http://cs231n.github.io/convolutional-networks/#pool

Fully Connected Layer ¢ ©

Fully
Connected
Layer

® | ooks at the feature maps of the
previous layer and determines
which features correlate to a
particular class/label

® Assuming a softmax output, the
FCL outputs an N length vector,
with the length equal to the
number of classes/labels you input. Y
Each digit will be between 0 and |, " T
roughly representing the https:/adeshpande3.github.io
probability of each class/label.

0O 0000CO0CO0ODO0OCO0OCO o0 o

coo0oo0o000dd8bdd
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Inception Module

Filter
Concatenation

3x3 Convolution 5x5 Convolution 1x1 Convolution
1x1 Convolution

1x1 Convolution 1x1 Convolution 3x3 Pooling

Previous Layer

Figure 1. Diagram of the inception module
The inception module distributes filter output from the previous layer to branches, each with filter
maps at different scales. NIN architecture is implemented as 1 X 1 convolutions which form linear
combinations of the input feature maps to reduce dimensionality through semantic similarity. Sep-
arate branches perform 33 and 5X5 convolution, as well as 33 overlapping pooling. The filtered
outputs from each branch are concatenated along the channel dimension before being passed to the
next layer.

“A Convolutional Neural Network Neutrino Event Classifier”
A.Aurisano et. al. JINST 11 (2016) no.09, PO9001
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CVN Event Classifier
Output

® Output gives a value for each category
whose sum is normalized to | for all labels

I 1 U U I 1 I 1 I U I I I
60—

— Appeared v,
| —— Survived Vv,

- — NC background
40— —— Beam v, background

Events / 18x10%° POT

0 0.2

0.4 0.6
v, CC Classifier Output
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0.8

Events / 18x10%° POT
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| —— Appeared v,

I I 1 U I U I 1 I

| —— Survived Vv,

| — NC background

10~ —— Beam v, background

0.2 0.4 0.6
v, CC Classifier Output
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Event CNN Training Sample
Compositions

Neutrino NOVA Preliminary Anti-Neutrino NOVA Preliminary
0.3 _ 0.3 ]
- -
2 k]
2 | 2
£ 0.2|- — e 0.2
0 - O
O O
I T
= =
2 )
O 0.1 — o 0.1 -
S S
LL LL
0 , 0 ,
Vi Ve Vi NC Cosmic Vi Ve Ve NC Cosmic

Similar composition of major categories between datasets.
Cosmics are data.
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Loss

Event CNN Training

Evolution

Neutrino

— Training Loss

— Test Loss

7=

6 — Test Accuracy

0 | | |

NOVA Preliminary

0.5

0.45

0.4

0.35

o o o
N N w
(&)}
Accuracy

o
—
(&)}

0.1

0.05

0 500 1000

Number of Training Iterations (1 03)

8o

—
Gl

Loss

Anti-Neutrino

NOVA Preliminary

- 0.5
- — Training Loss -
— —0.45
B — Test Loss -
—0.4
— Test Accuracy =
—0.35
—0.3 o
— O
- o
—0.25 3
] O
—] O
o2 <
MR = T
o.1
—fo.os
~ | | -
500 1000 1500

Number of Training Iterations (1 0%)

The red curve is accuracy of the top-1.The blue and green curves are the output of
the loss function in the test and training datasets, respectively. The dips at 500k and
I M iterations is where the learning rate of the network becomes smaller. The
flatness past |M iterations shows that the network has found a local minima.The
agreement between test and training loss gives a good indication that the network

has not overtrained.
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Cosmic 0.00064 0.0013 . Cosmic

Event CNN Classification Matrices

Neutrin A Anti-Neutrin —
Colo?itlEtfﬁcienc? NOVA Prellmlnary cmoriEEfﬁcieneci:I trino NOVA Prellmlnary

NC NC

Selected
Selected

£ Ve NC Cosmic Yy Ve Ve NC Cosmic

True True

Events are sorted by the their true category and then selected by whichever CVN output gives
highest value. Each column is normalized to |I. Along the diagonal gives the efficiency of each category
while the off diagonal gives insight to how the networks misclassify events.
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Cell

Occlusion Tests

NOVA Preliminary

0 20 40 60
Plane

NC PID

Ryan Murphy | Eﬂ INDIANA UNIVERSITY

80

100

50

More NC Like =

NC PID doesn’t find
tracks to useful in
identifying NC. Suggests
that the NC PID is more
sensitive to the activity
outside of the tracks.
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Occlusion Tests

80 . . . .
C
True N
60} s
50}
40
30}
5x5 block of cells
20 removed to make each
| alternative PID output
for the occlusion test
10}
O | | | |
0 20 40 60 80 100
Plane
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e Offers a way to peer inside
what CVN is learning

® Remove 5x5 block of cells
from image

® Rerun image through CVN
evaluator to get new
scores for each PID
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Cell

Occlusion Tests

NOVA Preliminary

0 20 40 60
Plane

vy PID
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80

100| -

hMore Numu Like =

52

Suggests that vy PID is
sensitive to tracks >10
planes. Activity outside
of tracks is disfavored.
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Event CVN on Real
Data D ata Data - muon + MC electron

NOVA Preliminary

o o ® Select muon neutrino interaction

v Prseles e Eens ; with traditional reco methods

60— MC Total _
® MC QE N . .
5 G Fes : ® Remove muon hits and replace with
B 40 - simulated electron

T B} ® |ess than 0.5% difference in efficiency

. I between Data/MC

% 121: 7L+++++ B by it bt P e e : PID Sample @ Preselection PID Efficiency | Efficiency diff %
g f v : . E Data | 262884 188809 | 0.718222 | _ .

2 — YN mc 277320 109895 | 0.720809 | 037

CVN v, Classifier
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Event CNN t-SNE

Cosmics

v. CC

[ 4

v, CC

"

https://indico.io/blog/visualizing-with-t-sne/
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1., NC
v, CC
v, CC
v, CC

Cosmics
)
o

https://indico.io/blog/visualizing-with-t-sne/
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