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1 Introduction

In the last lecture we have seen the BCFW recursion, which allowed the reduction of tree

diagrams into diagrams with fewer legs. Although this allows a huge simplification of the

computations, simply by recycling results from diagrams with fewer legs to those with

more, tree diagrams are not the full story yet. As taught in any introductory lecture on

quantum field theory, loop diagrams contribute as higher order corrections to the tree-level

amplitude and thus have to be computed as well.

In this seminar talk, we will have a look at one of the many techniques used to make the

computation of loop diagrams simpler and often even possible. It turns out, that many of

the appearing integrals are actually related by the so-called integration-by-parts relations

and thus only few of them have to be actually computed. The plan of this talk is as

follows. First of all, we will remind ourselves of the basic setup of the computation of loop

integrals and work through one of the simplest examples, the bubble integral. This will

demonstrate the essential techniques that are required and used to perform such integrals.

We will next consider the (slightly generalized) family of such bubble integrals and derive

their integration-by-parts identities, which allow us to express all these integrals in terms

of a two-dimensional basis. Finally, we will discuss in which directions this technique can

be applied and generalized. A good reference to get an overview of these techniques is [1].

Remark 1.1. Every loop in a Feynman diagram introduces an integration over the momen-

tum of the internal particle. It is mostly for this reason, that loop integrals are difficult

to compute. Furthermore, these integrals often contain divergent parts that have to be

renormalized. We take care of these divergences by working in dimensional regularization.

Let us briefly remind ourselves of this concept.
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Definition 1.2. Consider a loop integral in D0 spacetime dimensions (we will only consider

D0 = 4) over one loop momentum

I =

∫
dD0k

iπD0/2
F (k).

The integrand F (k) can be determined by the corresponding Feynman diagram and con-

tains the propagators of the loop. The dimensionally regularized integral is obtained by

considering the same integral instead in D = D0 − 2ε dimensions for some small ε. More

precisely, we analytically continue the integral as a function of the integer dimension to

arbitrary (even complex) dimensions. We can then consider the Laurent expansion of the

integral around ε = 0, which in general will be given as

I =
∑
k≥k0

Ikε
k (1.1)

for some k0 ∈ Z. We can now identify the divergent parts as those where ε appears with a

negative power and deal with them in a suitable way, eg. by introducing counter-terms.

2 Essential computation techniques: the bubble integral

We now consider a simple loop integral as an example of the usual integration techniques

required in order to solve such integrals. Although the actual computation in our exam-

ple will not be too hard, it already requires several non-trivial steps and highlights the

difficulties one encounters when computing more difficult loop integrals.

p p

p+k

k

Figure 1. The bubble diagram, a one-loop diagram with a particle of momentum p entering and

exiting the loop.

Definition 2.1. We consider the bubble diagram as depicted in figure 1. From the diagram

we can read off the so-called bubble integral, assuming we have a theory with the usual

scalar propagators and the particles involved are of mass m, which is given by

B(p2,m2) = eγEε
∫

dDk

iπD/2
1

(−k2 +m2)(−(k + p)2 +m2)
,

where we work in dimensional regularization D = 4 − 2ε. The additional factor eγEε,

where γE is the Euler-Mascheroni constant, is chosen for later convenience. Note that

we have suppressed the Feynman prescription, where (iδ) for an infinitesimal δ is added

in each propagator to deal with its poles. This is equivalent to specifying the contour of
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integration. We chose the usual causal contour, where we extend the integration along the

real part of k0 into the lower half of the complex plane for negative values and into the

upper half for positive values.

Proposition 2.2. The bubble integral can be computed to give

B(p2,m2) = eγEεΓ

(
2− D

2

)∫ 1

0
dx
[
x(x− 1)p2 +m2

]D
2
−2
.

Remark 2.3. Before we turn to the proof of proposition 2.2, let us remark that so far we

have not made use of dimensional regularization. In fact, the result of proposition 2.2 can

be used to demonstrate how precisely we analytically continue to arbitrary dimension. In

the original integral, the dimension appears directly only in the measure, whereas now the

dimension appears in the arguments of meromorphic functions only, which can easily be

continued to complex arguments.

One crucial step required to compute the bubble integral is to rewrite the integral in

the so-called Feynman parametrization. Let us recall the basic result before we begin the

actual computation. The reader is invited to prove it, which can be done by rewriting the

fraction in terms of an integral over the complex plane.

Lemma 2.4. For complex numbers A and B, such that the line segment between them

does not contain the origin, we can write

1

AB
=

∫ 1

0

dx

[xA+ (1− x)B]2
.

Proof of prop. (2.2). The guiding principle for the first part of the proof will be to rewrite

the integral such that we only integrate over k2. Making the spherical invariance of the

integrand obvious, this will allow us to perform the spherical part of the momentum inte-

gration leaving us with the radial part for the remainder of the proof. We thus first apply

the Feynman parametrization and obtain, for now absorbing the numerical constants into

the prefactor C, the integral

B(p2,m2) = C

∫
dDk

∫ 1

0
dx
[
x(−k2 +m2) + (1− x)

(
−(k + p)2 +m2

)]−2
.

We can now complete the square into k and make use of the translation invariance of the

measure. Thus, only considering the square root of the inverse integrand I, we compute

I = −xk2 + xm2 + (1− x)m2 − (1− x)(k + p)2

= −xk2 +m2 − (1− x)(k2 + 2kp+ p2)

= −k2 − 2(1− x)kp+m2 + (x− 1)p2

= − (k + (x− 1)p)2 + (x− 1)2p2 + (x− 1)p2 +m2

= − (k + (x− 1)p)2 + x(x− 1)p2 +m2.
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Plugging this back into the integral and shifting the momentum integration, we obtain

B(p2,m2) = C

∫
dDk

∫ 1

0
dx
[
−k2 + x(x− 1)p2 +m2

]−2
.

Note that until now working in Minkowski space, we have k2 = k20−k2. We now perform a

Wick rotation, that is we effectively substitute k0 → k̃0 = −ik0. Note that this is possible

due to the choice of integration contour. The measure thus picks up a factor of i and

k2 becomes −k2E = −k̃20 − k2, whereas the subscript E denotes that we now mean the

Euclidean norm. After this Wick rotation, the integral becomes

B(p2,m2) = iC

∫
dDk

∫ 1

0
dx
[
k2E + x(x− 1)p2 +m2

]−2
,

whereas the momentum integration is now over RD, ie the Euclidean space. As we are

from now on only working in Euclidean space in this proof, we will drop the E and work

with k as a usual Euclidean vector. We now directly see that the integrand is spherically

invariant. We thus split the integration into the radial and spherical parts, that is

dDk = |k|D−1 d |k| dΩD,

whereas dΩD denotes the integration over the spherical part, that is over the unit (D −
1)-sphere. As the integrand is independent of this spherical part, we can perform this

integration directly by remembering that∫
dΩD =

2πD/2

Γ(D2 )
.

Note that we now see the reason for including the normalisation of iπ
D
2 in the measure,

which is introduced in order to cancel the i from the Wick rotation and the volume of

the sphere. For D = 4, the gamma function appearing in this volume equals one, we will,

however, keep it for now. Renaming the integration variable for convenience, we have

B(p2,m2) =
eγEε

Γ
(
D
2

) ∫ 1

0
dx

∫ ∞
0

2yD−1dy

[y2 + x(x− 1)p2 +m2]2
.

We define K = x(x − 1)p2 + m2 and substitute the integration variable from y to u = y2

and then from u to Kv = u. The measure thus transforms as

2yD−1dy = u(D
2
−1)du = K

D
2 dv

and the integrand becomes
[
y2 +K

]−2
= K−2 [v + 1]−2, such that the integral becomes

B(p2,m2) =
eγEε

Γ
(
D
2

) ∫ ∞
0

dv v(D
2
−1) (1 + v)−2

∫ 1

0
dx K(D

2
−2),

whereas the integrals now factor, as all x-dependence is in K. The integration over v can

be recognized to be one of the definitions of the beta function

B(α, β) =

∫ ∞
0

dt tα−1 (1 + t)−(α+β) ,
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which can be evaluated in terms of the more usually known gamma function by

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
.

We thus see that the integral over v is given by a beta function with α = D
2 and β = 2− D

2 ,

such that, using its representation in terms of gamma functions, we get

B(p2,m2) =
eγEε

Γ
(
D
2

) Γ
(
2− D

2

)
Γ
(
D
2

)
Γ (2)

∫ 1

0
dx K(D

2
−2),

= eγEεΓ

(
2− D

2

)∫ 1

0
dx
[
x(x− 1)p2 +m2

]D
2
−2
,

using that Γ(2) = 1! = 1.

Having done most of the integration work, we can now do the dimensional regulariza-

tion and expand the result into a power series in terms of ε. In order to do so, let us first

collect a few results required for this expansion.

Lemma 2.5. Working explicitly in D0 = 4, we get

A
D
2
−2 = A−ε = 1− ε logA+

1

2
ε2 log2 (A) +O(ε3),

Γ

(
2− D

2

)
= Γ (ε) =

1

ε
e−γEε exp

( ∞∑
k=2

εk
(−1)k

k
ζk

)
= e−γEε

(
1

ε
+
ζ2
2
ε+O(ε2)

)
,

where ζk = ζ(k) are the integer values of the Riemann zeta function.

Remark 2.6. Note that the reason we included the exponential normalisation in the

integral in definition 2.1 is the inverse factor coming from the expansion of the gamma

function.

These results allow us to expand the integrand and the gamma function in front of the

remaining integral. We still, however, have to perform the integration over x, which can

now be done term by term. Let us state and prove this for the somewhat simpler case of

m = 0.

Corollary 2.7. The expansion of the massless bubble integral into powers of ε is given for

the first few terms by

B(p2, 0) =
1

ε
+ 2− log

(
−p2

)
+ ε

[
1

2
log2

(
−p2

)
− 2 log

(
−p2

)
− 1

2
ζ2 + 4

]
+O

(
ε2
)
.

Proof. We begin with the remaining integration, which for m = 0 and using D = 4 − 2ε

can be written as∫ 1

0
dx
[
x(x− 1)p2 +m2

]D
2
−2

=
(
−p2

)−ε ∫ 1

0
dx [x(1− x)]−ε .
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Using the expansion as stated in lemma (2.5), we can rewrite the integration as∫ 1

0
dx [x(1− x)]−ε =

∫ 1

0
dx

(
1− ε log (x(1− x)) +

1

2
log2 (x(1− x)) +O(ε3)

)
= 1 + 2ε+

(
4− π2

6

)
ε2 +O(ε3) = 1 + 2ε+ (4− ζ2) ε2 +O(ε3),

whereas we have evaluated the integrations termwise and used the well-known identity

ζ2 = π2

6 . We now have all the pieces required for the expansion and can put them together,

also using lemma (2.5) for the expansion of
(
−p2

)−ε
, to get

B(p2, 0) =

(
1

ε
+
ζ2
2
ε+O(ε2)

)(
1− ε log

(
−p2

)
+

1

2
ε2 log2

(
−p2

)
+O(ε3)

)
·

·
(
1 + 2ε+ (4− ζ2) ε2 +O(ε3)

)
=

1

ε
+

1

ε

(
2ε− ε log

(
−p2

))
+

1

ε

(
1

2
ε2 log2

(
−p2

)
+ (4− ζ2) ε2 − 2ε2 log

(
−p2

))
+
ζ2
2
ε+O

(
ε2
)
,

which, after rearranging some terms, is exactly the stated result.

Remark 2.8. Before we go on with the next section, let us remark on the result. We see

that the coefficients of ε are given by logarithms and zeta values. This is a common feature

for a large class of amplitudes and has connections to pure mathematics. It is established

that the coefficients of these power series of Feynman integrals are from a certain class of

numbers (the so-called periods, to which the logarithms and zeta-values belong) and in

many cases of N = 4 Super Yang Mills amplitudes only (generalizations of) the logarithms

and zeta-values appear. These have a very rich mathematical structure, which allows the

computation of such amplitudes without ever having to refer to Feynman diagrams. A

good introduction to this fascinating area of amplitudes research is [2].

3 Integration-by-parts identities

In the previous section we have seen how to compute loop integrals by considering the

bubble integral as an example. Despite being one of the simplest loop integrals, solving it

required a considerable amount of non-trivial steps. For more complicated diagrams, many

more such diagrams appear, most of which are extremely difficult to solve just using the

tools from the example. We thus require some more techniques that allow us to deal with

these quantities. Following a core principle of the amplitudes field, we will manipulate the

loop integrals such that we can reduce the required amount of computation by relating the

integrals to each other thus allowing us to recycle results.

Definition 3.1. Closely following the loop integral example, we now consider the (gener-

alized) family of bubble integrals of the form

J(a1, a2) = eγEε
∫

dDk

iπD/2
1

(−k2 +m2)a1(−(k + p)2 +m2)a2
,
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for integer a and b. Note that J(a1, a2) = J(a2, a1) due to the translation invariance of the

measure.

Remark 3.2. Note that we computed J(1, 1) = B(p2,m2) in the previous section.

Proposition 3.3. The bubble integrals satisfy the integration-by-parts (IBP) identities

0 = (D − 2a1 − a2) J(a1, a2)− a2J(a1 − 1, a2 + 1)

+ 2a1m
2J(a1 + 1, a2) + a2(2m

2 − p2)J(a1, a2 + 1).

Proof. As the name suggests1, we can derive the IBP identities by noticing that we have

0 =

∫
dDk ∂µ

(
kµ

1

(−k2 +m2)a1(−(k + p)2 +m2)a2

)
,

whereas the boundary term vanishes for a + b ≥ 1. In order to keep the computations

organized, let us define A(q) = −(k + q)2 +m2 thus allowing us to write the integrand (of

the original bubble integral) as

I(a1, a2) =
1

(−k2 +m2)a1(−(k + p)2 +m2)a2
=

1

A(0)a1A(p)a2
.

From this definition we can straightforwardly read off the relations

J(a1, a2) =

∫
dDk I(a1, a2), A(0)xA(p)yI(a1, a2) = I(a1 − x, a2 − y),

which allow us to keep the computation concise. We can now perform the differentiation

to get

0 =

∫
dDk ∂µ (kµI(a1, a2)) = DJ(a1, a2) +

∫
dDk kµ∂µI(a1, a2), (3.1)

whereas we have used ∂µk
µ = D, allowing us to pull this factor out of the integral thus

leading to the first term. Continuing with the differentiation, we get

kµ∂µI (a1, a2) = kµ∂µ
(
A(0)−a1A(p)−a2

)
= kµ∂µ

(
A(0)−a1

)
A(p)−a2 +A(0)−a1kµ∂µ

(
A(p)−a2

)
= −a1A(0)−a1−1A(p)−a2kµ∂µA(0)− a2A(0)−a1A(p)−a2−1kµ∂µA(p)

= −a1I (a1 + 1, a2) k
µ∂µA(0)− a2I (a1, a2 + 1) kµ∂µA(p).

As we differentiate with respect to k we only need to compute kµ∂µA(q) to get all the

missing terms in this computation. We thus continue with

kµ∂µA(q) = −kµ∂µ (k + q)2 = −2 (k + q)ν k
µ∂µ (k + q)ν

= −2 (k + p)ν k
ν = −2

(
k2 + kq

)
.

1This is because we can rewrite integration by part as a consequence of Stokes’ theorem∫
M

dx
df(x)

dx
g(x) = [f(x)g(x)]∂M −

∫
M

dx f(x)
dg(x)

dx
⇐⇒ 0 = − [f(x)g(x)]∂M +

∫
M

dx
d

dx
(f(x)g(x)) .
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We want to write this in terms of A(q) again and thus compute

k2 + kq =
1

2
(k + q)2 +

1

2

(
k2 − q2

)
=

1

2

[
(k + q)2 −m2

]
+

1

2

[
k2 −m2

]
− 1

2

(
q2 − 2m2

)
= −1

2
A(q)− 1

2
A(0)− 1

2

(
q2 − 2m2

)
.

Using this result, we get

kµ∂µA(q) = A(q) +A(0) + q2 − 2m2

and can thus continue with the actual computation to get

kµ∂µI (a1, a2) = −a1I (a1 + 1, a2)
(
2A(0)− 2m2

)
− a2I (a1, a2 + 1)

(
A(q) +A(0) + q2 − 2m2

)
= −2a1I (a1, a2) + 2a1m

2I (a1 + 1, a2)− a2I (a1, a2)

− a2I (a1 − 1, a2 + 1) + a2
(
2m2 − q2

)
I (a1, a2 + 1) .

Plugging all these results into equation (3.1), we get

0 = (D − 2a1 − a2) J(a1, a2)− a2J(a1 − 1, a2 + 1)

+ 2a1m
2J(a1 + 1, a2) + a2(2m

2 − p2)J(a1, a2 + 1),

which is the integration-by-part identity that we stated.

Remark 3.4. Using the symmetry J(a1, a2) = J(a2, a1), we obtain a very similar equation

and thus get two equations for the two integrals J(a1 + 1, a2) and J(a1, a2 + 1). If both a1
and a2 are non-zero, we can solve these equations and thus express these two integrals in

terms of integrals J(b1, b2) with b1 + b2 = a1 + a2 − 1.

Remark 3.5. For the case that one of these integers is zero, eg. a2 = 0, we can also

express the integral J(a1 + 1, 0) in terms of integrals whose sum of indices is one less. In

particular, we get

J(a1 + 1, 0) =
2a1 −D
2a1m2

J(a1, 0), (3.2)

which can be immediately read off from the IBP identity. Using the symmetry of J this also

relates J(0, a2 + 1) to J(0, a2). Note that the integral J(a, 0) corresponds to the tadpole

diagram. In this way, we can consider the simpler tadpole diagram as a part of the more

complicated bubble diagram. The same view can be taken for even more complicated loop

diagrams, we could, for example, consider the tadpole, bubble and triangle diagram to be

part of the box diagram.

Corollary 3.6. All integrals of the generalized bubble integral family can be expressed in

terms of a basis of two appropriate such integrals, the so-called master integrals. Thus, the

space of these integrals is two-dimensional with a basis given for example by J(1, 0) and

J(1, 1).
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Proof. Using the arguments made in remarks 3.4 and 3.5 we can decompose any bubble

integral with positive a1 and a2 into integrals whose sum of indices is one less than a1 +a2.

We can repeat this process, until we obtain integrals whose sum of indices is 1 or 2, that

is until we have decomposed the original integral into J(1, 0), J(0, 1) and J(1, 1)2. These

integrals cannot be further decomposed, as the derived equations only relate J(a1 + 1, a2)

and J(a1, a2 + 1) to integrals with sum of indices equal to a1 + a2 if both a1 and a2 are

non-zero or using the special case J(a1+1, 0) to J(a1, 0) if a1 is non-zero and thus does not

allow any further decomposition. Using that J(0, 1) = J(1, 0), the statement is proven.

4 Outlook

We have seen in this seminar talk how we can use classical techniques to compute loop

integrals, at least for examples where this can be done with a moderate amount of work. In

order to reduce the required work by as much as possible, we then proceeded to derive the

integration-by-parts identities for the example we considered. It turns out that these iden-

tities allow us to reduce the (infinite) family of integrals to a basis of two master-integrals.

Having computed only these two integrals, we can express all the other integrals in terms

of these results.

We have only considered one-loop integrals. In more general cases, we can generate

IBP identities for L-loop integrals by considering similarly that

0 =

∫ L∏
i=1

(
dDki

iπD/2

) L∑
j=1

∂

∂kµj

vµj
Da1

1 . . . Dak
k

, (4.1)

whereas vµj is a polynomial in the internal and external momenta and Dk denotes the in-

verse propagator. By choosing appropriate polynomials vµj we can generate many, more or

less, useful integration-by-parts identities. There are by now many implementations that

do the reduction by these IBP identities automatically. One possible realization is to re-

cast the relation (4.1) into a problem of algebraic geometry, such that the well-established

computational techniques in this area can be used (see eg. [3]).

Being able to express Feynman integrals in terms of master-integrals also allows us to

determine the latter by differential equations. Let us briefly see this in our bubble integral

example. Instead of the basis J(1, 0) and J(1, 1) we will now use J(3, 0) and J(2, 1), which

have the advantage of being finite as ε → 0. The first of these integrals can be computed

by the techniques used to compute J(1, 1) to give

J(3, 0) =
Γ
(
3− D

2

)
Γ (3)

1

(m2)3−D/2
. (4.2)

2The other integrals with sum of indices equal to 2, that is J(2, 0) and J(0, 2), are related to J(1, 0) and

J(0, 1) by equation (3.2) and the symmetry of J .
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Now consider the other basis integral J(2, 1), and compute its derivative with respect to

m2. This leads to

∂m2J (2, 1) = C

∫
dDk ∂m2

1

(−k2 +m2)2
(
− (k + p)2 +m2

)
= C

∫
dDk

 −2 ∂m2

(
−k2 +m2

)
(−k2 +m2)3

(
− (k + p)2 +m2

) +
−1 ∂m2

(
− (k + p)2 +m2

)
(−k2 +m2)2

(
− (k + p)2 +m2

)2


= −2J (3, 1)− J (2, 2) ,

and thus gives a first-order differential equation for J (2, 1) in terms of two other integrals.

But we can relate these by the IBP reduction to J(2, 1) and J(3, 0) and thus obtain the

differential equation

∂m2J (2, 1) =
2

4m2 − p2
[(D − 5) J (2, 1)− J (3, 0)] .

Now we have a linear, first-order differential equation for J (2, 1) with an inhomogeneous

part given by J (3, 0), which is known by equation (4.2). With a little more work, this dif-

ferential equation can be solved, such that we can completely avoid explicitly performing

the loop integral.

If one carefully chooses a basis f of Feynman integrals fi, it is possible to rearrange

the differential equations they satisfy into the form

∂f = εAf , (4.3)

for some coefficient matrix A, which does not depend on ε. This implies that the right hand

side of the differential equation is proportional to ε. When solving for the basis integrals,

we want to express the solution as a power series in ε as in equation (1.1). Making such

a general ansatz, the differential equation (4.3) decouples and can thus be solved order by

order in ε. Much more can be done along this line and we refer to chapter 3.8 of [1], where

this is and further directions are discussed in some more detail.
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