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structure formation equations

cosmic structure formation
structure formation is a self gravitating, fluid mechanical
phenomenon

• continuity equation: evolution of the density field due to
fluxes

∂

∂tρ + div(ρυ⃗) = 0 (1)

• Euler equation: evolution of the velocity field due to forces
∂

∂t υ⃗ + υ⃗∇υ⃗ = −∇Φ (2)

• Poisson equation: potential sourced by density field
ΔΦ = 4πGρ (3)

• 3 quantities, 3 equations → solvable
• 2 nonlinearities: ρυ⃗ in continuity and υ⃗∇υ⃗ in Euler-equationmodern cosmologyBjörn Malte Schäfer
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viscosity and pressure

dynamics with dark matter
dark matter is collisionless (no viscosity and pressure) and
interacts gravitationally (non-saturating force)

• dark matter is collisionless → no mechanism for microscopic
elastic collisions between particles, only interaction by
gravity

• derivation of the fluid mechancis equation from the
Boltzmann-equation: moments method
• continuity equation
• Navier-Stokes equation
• energy equation

• system of coupled differential equations, and closure relation
• effective description of collisions: viscosity and pressure,
but
• relaxation of objects if there is no viscosity?
• stabilisation of objects against gravity if there is no pressure?

• Navier-Stokes equation for inviscid fluids is called
Euler-equation
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collective dynamics: dynamical friction

source: J. Schombert

• dynamical friction emulates viscosity: there is no microscopic
model for viscosity, but collective processes generate an
effective viscosity
• a particle moving through a cloud produces a wake
• behind the particle, there is a density enhancement
• density enhancement breaks down particle velocity

• kinetic energy of the incoming object is transformed to
unordered random motion
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Kelvin-Helmholtz instability

• shear flows become unstable if there are large perpendicular
velocity gradients

• generation of vorticity in shear flows by the
Kelvin-Helmholtz instability

• absent in the case of dark matter: flow is necessarily laminar

modern cosmologyBjörn Malte Schäfer
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vorticity
• intuitive explanation of the nonlinearity of the
Navier-Stokes eqn

∂

∂t υ⃗ + υ⃗∇υ⃗ =
∇p
ρ − ∇Φ + μΔυ⃗ (4)

• vorticity equation: ω⃗ ≡ rotυ⃗
∂ω⃗
∂t + υ⃗∇ω⃗︸        ︷︷        ︸

material derivative

= ω⃗∇υ⃗︸︷︷︸
tilting

− ω⃗divυ⃗︸ ︷︷ ︸
compression

+
1
ρ2
∇p × ∇ρ︸        ︷︷        ︸

baroclinic

+ μΔω⃗︸︷︷︸
diffusion
(5)

• generation of vorticity by
• pressure gradients non-parallel to density gradients
• viscous stresses

→ not present in the case of collisionless dark matter
→ gravity as a conservative force is not able to induce
vorticity

• vorticity equation is a nonlinear diffusion equation, vorticity
is advected by its own induced velocity field

modern cosmologyBjörn Malte Schäfer
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regimes of structure formation

look at overdensity field δ ≡ (ρ − ρ̄)/ρ̄, with ρ̄ = Ωmρcrit
• analytical calculations are possible in the regime of linear
structure formation, δ ≪ 1
→ homogeneous growth, dependence on dark energy, number
density of objects

• transition to non-linear structure growth can be treated in
perturbation theory (difficult!), δ ∼ 1
→ first numerical approaches (Zel’dovich approximation),
directly solvable for geometrically simple cases (spherical
collapse)

• non-linear structure formation at late times, δ > 1
→ higher order perturbation theory (even more difficult),
ultimately: direct simulation with n-body codes
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linearisation: perturbation theory for δ ≪ 1
• move from physical to comoving frame, related by
scale-factor a

• use density δ = Δρ/ρ and comoving velocity u⃗ = υ⃗/a
• linearised continuity equation:

∂

∂tδ + divu⃗ = 0

• linearised Euler equation: evolve momentum
∂

∂t u⃗ + 2H(a)u⃗ = −∇Φ
a2

• Poisson equation: generate potential
ΔΦ = 4πGρ0a2δ

question
derive the linearised equations by subsituting a perturbative
series ρ = ρ0(1 + δ) for all quantities, in the comoving frame

modern cosmologyBjörn Malte Schäfer
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growth equation
• structure formation is homogeneous in the linear regime, all
spatial derivatives drop out

• combine continuity, Jeans- and Poisson-eqn. for differential
equation for the temporal evolution of δ:

d2δ
da2
+
1
a

(
3 + d lnH

d ln a

)
dδ
da
=
3ΩM(a)
2a2

δ (6)

• growth function D+(a) ≡ δ(a)/δ(a = 1) (growing mode)
• position and time dependence separated: δ(x⃗, a) = D+(a)δ0(x⃗)
• in Fourier-space modes grows independently:
δ(k⃗, a) = D+(a)δ0(k⃗)

• for standard gravity, the growth function is determined by
H(a)

question
derive H(a) as a function of D+(a) modern cosmologyBjörn Malte Schäfer
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terms in the growth equation
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source (thin line) and dissipation (thick line)

• two terms in growth equation:
• source Q(a) = Ωm(a): large Ωm(a) make the grav. fields strong
• dissipation S(a) = 3 + d lnH/d ln a: structures grow if their
dynamical time scale is smaller than the Hubble time scale
1/H(a)
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growth function
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D+(a) for Ωm = 1 (dash-dotted), for ΩΛ = 0.7 (solid) and Ωk = 0.7 (dashed)

• density field grows ∝ a in Ωm = 1 universes, faster if w < 0

question
derive growth equation, use scale-factor a as time variable,
and show that D+(a) = a is a solution for Ωm = 1
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nonlinear density fields

ΛCDM SCDM (Ωm = 1)
source: Virgo consortium

• dark energy influences nonlinear structure formation
• how does nonlinear structure formation change the statistics
of the density field?

modern cosmologyBjörn Malte Schäfer
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mode coupling
• linear regime structure formation: homogeneous growth

δ(x⃗, a) = D+(a)δ0(x⃗)→ δ(k⃗, a) = D+(a)δ0(k⃗) (7)

• separation fails if the growth is nonlinear, because a void
can’t get more empty than δ = −1, but a cluster can grow to
δ ≃ 200

δ(x⃗, a) = D+(a, x⃗)δ0(x⃗) (8)
• product of two x⃗-dependent quantities in real space →
convolution in Fourier space:

δ(k⃗, a) =
∫

d3k′D+(a, k⃗ − k⃗′)δ0(k⃗′) (9)

• k-modes do not evolve independently: mode coupling
• correlation produces a non-Gaussian field (central limit
theorem)
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perturbation theory
• perturbative series in density field:

δ(x⃗, a) = D+(a)δ(1)(x⃗) + D2
+(a)δ(2)(x⃗) + D3

+(a)δ(3)(x⃗) + . . . (10)

• lowest order:

δ(2)(k⃗) =
∫ d3p

(2π)3
M2(k⃗ − p⃗, p⃗)δ(p⃗)δ(|k⃗ − p⃗|) (11)

• with mode coupling

M2(p⃗, q⃗) =
10
7 +

p⃗q⃗
pq

(p
q +

q
p

)
+
4
7

( p⃗q⃗
pq

)2
(12)

• properties:
• time-independent, no scale p⃗0
• strongest coupling if p⃗ = q⃗
• some coupling of modes p⃗ ⊥ q⃗
• no coupling if p⃗ = −q⃗ modern cosmologyBjörn Malte Schäfer
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homogeneity, linearity and Gaussianity

homogeneity, linearity and Gaussianity
...almost the same thing in structure formation!

• linearity
• eqns can be linearised:

∣∣∣δ∣∣∣ ≪ 1
• linearisation fails:

∣∣∣δ∣∣∣ ≃ 1
• homogeneity

• homogeneous: δ(x⃗, a) = D+(a)δ(x⃗, a = 1)
• inhomogeneous: δ(x⃗, a) = D+(x⃗, a)δ(x⃗, a = 1)

• Gaussianity (with central limit theorem)
• Gaussian amplitude distribution p(δ)dδ
• non-Gaussian (lognormal) distribution p(δ)dδ

mode coupling
easiest way to visualise: resonance phenomenon

modern cosmologyBjörn Malte Schäfer
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nonlinearity triangle

• linearity, homogeneity and Gaussianity imply each other
• nonlinear structure formation breaks homogeneity and
produces non-Gaussian statistics

• mode coupling - can be described in perturbation theory

barrier at delta=−1

linearity
SF equations can be linearised

homogeneity
position independent growth

Gaussianity
Gaussian amplitude distribution

central limit theorem

independent Fourier modes

|delta|<<1

delta(x,a) = D+(a) delta(x) delta(k,a) = D+(a) delta(k) p(delta)d delta

barrier at delta=−1

modern cosmologyBjörn Malte Schäfer
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link between dynamics and statistics

• nonlinear structure formation couples modes
• superposition of various k-modes (not independent anymore)
generate a non-Gaussian density field

• non-Gaussian density field:
• odd moments are not necessarily zero
• even moments are not powers of the variance

• finite correlation length: n-point correlation functions
• 3-point-function: bispectrum
• 4-point-function: trispectrum

higher order correlations quickly become unpractical, and are
really difficult to determine

modern cosmologyBjörn Malte Schäfer
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nonlinear CDM spectrum P(k)
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• fit to numerical data, z = 9,4, 1,0, normalised on large scales
• extra power on large scales, time dependent, saturates
• on top of scaling P(k, a) ∝ D2

+(a)
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quantification of non-Gaussianities: bispectrum
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• bispectrum (3-point function) quantifies nonlinearity to
lowest order

• configuration dependence: compare arbitrary triangle to
equilateral triangle, keeping base fixed:

Rℓ3 (ℓ1, ℓ2) =
ℓ1ℓ2

ℓ23

√∣∣∣∣∣∣B(ℓ1, ℓ2, ℓ3)
B(ℓ3, ℓ3, ℓ3)

∣∣∣∣∣∣ (13)
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n-body simulations of structure formation

• basic issue: gravity is long-ranged, for each particle the
gravitational force of all other particle needs to be summed
up, complexity n2

• algorithmic challenge to break down n2-scaling
• particle-mesh
• particle3-mesh
• tree-codes
• tree-particle mesh

modern cosmologyBjörn Malte Schäfer
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Zel’dovich-approximation: idea

density δ(⃗r)

Φ(⃗r)=−G
∫
d3r′ δ(⃗r′)

|⃗r−r⃗′ |
��

density δ0(⃗r)

Ψ0 (⃗r)=−G
∫
d3r′ δ0 (⃗r′)

|⃗r−r⃗′ |��
potential Ψ(⃗r)

υ⃗∝−∇Ψ
��

potential Ψ0(⃗r)

υ⃗∝D+∇Ψ⃗0
��

velocity υ⃗(⃗r)

x⃗=q⃗−∇ΨΔt
��

velocity υ⃗(⃗r)

x⃗=q⃗−D+(a)∇Ψ0
��

density δ(⃗r) density δ(⃗r)

• probe into nonlinear structure formation
• avoid full nonlinear dynamics, use clever approximation

modern cosmologyBjörn Malte Schäfer
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Zel’dovich-approximation
• evolution of perturbation in the translinear regime
• idea: follow trajectories of particles that accumulate in a
region and produce a density fluctuation

• physical position r⃗ (Euler) can be related to initial position q⃗
(Lagrange)

x⃗ = r⃗(t)
a = q⃗ + D+(t)∇Ψ(q⃗) (14)

• two contributions: Hubble-flow and local deviation,
expressed by displacement field Ψ(q⃗)

• displacement field Ψ is a solution to Poisson eqn. ΔΨ = δ
• evolution dominated by overall potential, not by self-gravity

question
can δ become infinite in the Zel’dovich-approximation? what
happens in Nature?

modern cosmologyBjörn Malte Schäfer
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Zel’dovich-approximation: quick realisation

time sequence of structure formation in a dark energy cosmology

• formation of sheets and filaments
• very fast computational scheme (above pic: seconds!!)
• can’t use Zel’dovich approximation, if trajectories cross
• no relaxation (collapsing sphere would reexpand to orginial
radius)

modern cosmologyBjörn Malte Schäfer
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Zel’dovich: comparision to exact solution

comparison between Zeldovich and exact solution, source: N. Wright

• reexpanding structures, no dissipation, no formation of
objects

• qualitative agreement on large scales, small densities

modern cosmologyBjörn Malte Schäfer
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gravothermal instability: thermal energy
• consider self-gravitating system, exchanging (thermal)
energy with environment, Lynden-Bell & Wood (1968)

• example: cluster of galaxies loses energy in the form of
thermal X-ray radiation, Coma: few 1044 erg/sec

1 energy is removed from a self-gravitating object, on a
time-scale tremove ≫ dynamical time-scale tdyn

2 system assumes a new equilibrium state deeper inside its own
potential well (quasi-stationary, no relaxation)

3 release of gravitational binding energy, particles speed up
4 velocity dispersion (temperature) rises

• reacts on removal of thermal energy by heating up!
• self-gravitating systems have a negative specific heat c
• systems cool, if tremove ≪ tdyn, in this case c > 0
• stability of self-gravitating non-isolated systems?

modern cosmologyBjörn Malte Schäfer
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gravothermal instability: particles

globular cluster Omega Centauri, source: Loke Kun Tan

• stars continuously reshuffle their kinetic energy in a globular
cluster

• kinetic energy of a star fluctuates, can get gravitationally
unbound

• star leaves cluster on parabolic orbit, does not take away
energy

• gravitational binding energy distributed among fewer stars
• system heats up by evaporating stars, eventually
disintegrates

• ”final state”: tightly bound binary system, all stars lost

modern cosmologyBjörn Malte Schäfer
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angular momentum of galaxies

galaxy M81, HST image

• vorticity can’t be generated in inviscid fluids
• flow is laminar
• initial vorticity decreases ∝ 1/a

modern cosmologyBjörn Malte Schäfer
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angular momentum: tidal shearing
Lagrange frameEuler frame

• non-constant displacement mapping across protogalactic
cloud

• tidal forces ∂i∂jΨ set protogalactic cloud into rotation
• in addition: anisotropic deformation (not drawn!)
• gravitational collapse: non-simply connected fields

modern cosmologyBjörn Malte Schäfer
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tidal shearing in Zel’dovich-approximation

• current paradigm: galactic haloes acquire angular momentum
by tidal shearing (White 1984)

L⃗ ≃ ρ0a5
∫
VL

d3q(q⃗ − q̄) × ˙⃗x (15)

• tidal shearing can be described in Zel’dovich approximation

x⃗(q⃗, t) = q⃗ − D+(t)∇Ψ(q⃗)→ ˙⃗x = −Ḋ+∇Ψ (16)

• 2 relevant quantities: inertia Iαβ and shear Ψαβ

Lα = a2Ḋ+εαβγIβσΨσγ (17)

• tidal shear Ψαβ = ∂α∂βΨ, derived from Zel’dovich
displacement field Ψ ∝ Φ, solution to ΔΨ = δ

modern cosmologyBjörn Malte Schäfer
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tidal interaction with the large-scale structure
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alignment of haloes with the tidal field, source: O. Hahn

• haloes interact with the large-scale structure with tidal
forces

• decomposition IΨ = 1
2
[I,Ψ]

+ 1
2
{I,Ψ}

• commutator [I,Ψ]: angular momentum generation
• anticommutator {I,Ψ}: anisotropic deformation
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nonlinearly evolved density field

source: V.Springel, Millenium simulation

modern cosmologyBjörn Malte Schäfer
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spherical collapse
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• formation of a bound dark matter object: gravitational
collapse

• three phase process:
1 perturbation expands with Hubble expansion, but at a lower

rate
2 perturbation decouples from Hubble expansion → turn around
3 perturbation collapses under its own gravity
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density evolution in a collapsing halo

source: Padmanabhan, theoretical astrophysics
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collapse overdensity in different cosmologies
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• SCDM: collapse overdensity of δc = 1.686, very similar in
ΛCDM

• dark energy cosmologies require smaller collapse
overdensities

• sensitivity towards dark energy parameters
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relaxation
• in the dynamical evolution, systems tend towards a final
state which is not very sensitive on the initial conditions →
relaxation

• usually, this is accompanied by generation of entropy, which
defines an arrow of time

• in cosmology, galaxies with very similar properties form from
a Gaussian fluctuation in the matter distribution

• but: dark matter is a collisionless fluid!
• no viscosity in Euler-eqn. which can dissipate velocities
• transformation from kinetic energy to heat is not possible
• no Kelvin-Helmholtz instability and Kolmogorov cascading
• Euler-equation is time-reversible and no entropy is generated
• relaxation does not take place

question
show that the Euler-eqn. and the vorticity eqn. are
time-reversible modern cosmologyBjörn Malte Schäfer
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relaxation: 1. two-body relaxation

two-body relaxation
relaxation with Keplerian (time-reversible) orbits in a
succession of two-body encounters

• consider a system with N stars of size R, density of stars is
n ∼ N/R3, total mass M = Nm

• shoot a single star into the cloud an track its transverse
velocity

• in a single encounter the velocity changes

δυ⊥(single) ∼ Gm
b2

2b
υ ∼

2Gm
bυ

(18)

with impact parameter b, using Born-approx. with δt = 2b/υ
• multiple encounters: add random kicks, so variance δυ2⊥ grows

d
dt

δυ2⊥ ∼ 2π
∫

bdb δυ⊥(single) nυ = 8πG2m2n
υ ln

(
bmax
bmin

)
(19)modern cosmologyBjörn Malte Schäfer
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relaxation: 2. dynamical friction

source: J. Schombert

• system of reference with moving particle
• all other particle zoom past on hyperbolic orbits,
orbit/gravitational scattering depends sensitively on the
impact parameter

• directed, ordered velocities → random transverse velocities
modern cosmologyBjörn Malte Schäfer
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relaxation: 3. violent relaxation
• proposed by Lynden-Bell for explaining the brightness
profile of elliptical galaxie, wipes out structure of spiral
galaxies in the merging

• each particle sees a rapidly fluctuating potential generated
by all particles

dE
dt
=
m
2
dυ2
dt
+
∂Φ
∂t + υ⃗∇Φ (20)

• dynamic kind of scattering mediated by grav. field

with dυ2
dt
= 2υ⃗dυ⃗

dt
= − 2mυ⃗∇Φ → dE

dt
=
∂Φ
∂t (21)

• even particles with initially similar trajectories get separated

violent relaxation
important relaxation mechanism, due to long-reaching
gravity modern cosmologyBjörn Malte Schäfer
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relaxation: 4. phase space mixing

globular cluster Palomar-5, source: J. Staude

• time evolution of a globular cluster orbiting the Milky Way:
• stars closer to Galactic centre move faster
• stars further away move slower

• with time, the streams get more elongated and eventually
form a tightly wound spiral

modern cosmologyBjörn Malte Schäfer
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relaxation: 4. phase space mixing
• naive interpretation:
system produces structure on smaller and smaller scales
(spiral winds up), eventually crosses thermodynamic scale λ

• but: the system is time-reversible and does conserve full
phase space information

• relaxation does not take place, the system remembers its
initial conditions

• thermodynamic scale is not well defined, gravity is a power
law!

• solution: no matter how small the thermodynamic scale is
chosen, the system will always wipe out structures above this
scale with time → coarse-graining

generation of entropy
phase space density f measured above this scale decreases,
and entropy S ∝ −

∫
d3pd3q f ln f increases modern cosmologyBjörn Malte Schäfer
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final state: virialisation

final state
relaxation mechanisms generate a final state which does not
depend on the initial conditions, e.g. a stable galaxy from
some random flucutation in the Gaussian density field

• a virialised object does not evolve anymore and is
characterised by a symmetric phase space distribution →
equipartition, and a velocity distribution which depends only
on constants of motion

• systems are stabilised against gravity by their particle
motion, despite the lack of a microscopic collision mechanism
which provides pressure

• virial relation 2⟨T⟩ = −⟨V⟩ between mass, size and
temperature

⟨υ2⟩ = 3σ2υ =
GM
R → M ≃

3Rσ2υ
G = 1015M⊙/h

(
R

1.5Mpc/h

) (
συ

1000km/s

)2
(22)
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stability: density profiles of dark matter objects
• does a final state exist? needs to maximise entropy. . .
• use phase space density f for describing the steady-state
distribution of particles in a dark matter halo

• solution need to be a solution of the collisionless
steady-state (∂f/∂t = 0) Boltzmann-eqn.

df
dt
=
∂f
∂t + υ⃗∇xf − ∇Φ∇υf = 0 (23)

• and they need to be self consistent: the mass distribution
generates its own potential

ΔΦ = 4πGρ with ρ = m
∫

d3υ f(x⃗, υ⃗) (24)

• originally for galactic dynamics, applies for dark matter as
well (collisionlessness)

modern cosmologyBjörn Malte Schäfer
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self-consistent solutions of dark matter objects

• Ansatz for phase space density f: should depend on the
integrals of motion C, because then f satisfies the
steady-state Boltzmann-equation: df/dt = ∂f/∂C × ∂C/∂t

• shift potential Φ: ψ = −Φ + Φ0, with constant Φ0 (make ψ
vanish at boundary)

• simple approach: phase space density f(x⃗, υ⃗) depends only on
ε = ψ − υ2/2, assumption of spherical symmetry

• matter density ρ for a model follows from

ρ(x⃗) =
∫ ψ

0
dε 4πf(ε)

√
2(ψ − ε) (25)

• substitute ρ in Poisson equation: Δψ = −4πGρ, solve for ψ as
a function of ε, boundary conditions on ψ(0) = ψ0 and ψ′(0) = 0
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singular isothermal sphere

credit: Padmanabhan, theoretical astrophysics

• distribution function, motivated by Boltzmann statistics

f(ε) =
ρ0

(2πσ2)3/2
exp

( ε
σ2

)
(26)

• properties:
• constant velocity dispersion inside object, σ2 = 3⟨υ2⟩
• temperature assignment kBT ∝ σ2
• numerical solution to Boltzmann-problem exists, finite core
density

• at large radii, ρ ∝ r−2 → flat rotation curve
modern cosmologyBjörn Malte Schäfer
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Navarro-Frenk-White profile

question
construct a possible fitting formula for the NFW-profile!
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Navarro-Frenk-White profile
• Navarro, Frenk +White: haloes in n-body simulation show a
profile:

ρ ∝ 1
x(1 + x2)

with x ≡ r
rc

and rc = crvir (27)

• universal density profile, applicable to haloes of all masses
• fitting formula breaks down:

• infinite core density
• total mass diverges logarithmically

• very long lived transitional state (gravothermal instability)
• scale radius rs is related to virial radius by concentration
parameter c

• c has a weak dependence on mass in dark energy models

question
show that the NFW-profile allows flat rotation curves!
what’s the size of the galactic disk? what happens if the
disk is very large?
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number density of collapsed objects

halo formation
haloes form at peaks in the density field → reflect the
fluctuations statistics in the high-δ tail of the probability
density

• valuable source of information on Ωm, σ8, w and h
• prediction of the number density of haloes from the
spectrum P(k) → Press-Schechter formalism

• relate mass M to a length scale R

M = 4π
3 ΩmρcritR3 (28)

• how often does the density field try to exceed some
threshold δc on the mass scale M?
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Press-Schechter formalism
• consider variance of the convolved density field

σ2R =
1

2π2

∫
dk k2P(k)W(kR)2 (29)

with a top-hat filter function of size R
• convolved field δ̄ has a Gaussian statistic with the variance σ2R

p(δ̄, a)dδ̄ = 1√
2πσ2R

exp
− δ̄2

2σ2R(a)

 (30)

with σ2R(a) = σ2RD+(a)

• condition for halo formation: δ̄ > δc
• fraction of cosmic volume filled with haloes of mass M

F(M, a)
∫ ∞

δc
dδ̄ p(δ̄, a) =

1
2erfc

 δc√
2σR(a)

 (31)
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Press-Schechter formalism
• distribution of haloes with mass M: ∂F(M)/∂M → add relation
between M and R

∂F(M)
∂M =

1
√
2π

δc
σRD+(a)

d ln σR
dM

exp
− δc

2σ2RD
2
+(a)

 (32)

after using the derivative
d
dx

erfc(x) = − 2
√
π
exp(−x2) (33)

• comoving number density: divide occupied cosmic volume
fraction by halo volume M/ρ0

n(M, a)dM = ρ0√
2π

δc
σRD+(a)

d ln σR
d lnM

exp
− δ2c

2σ2RD
2
+(a)

 dMM2 (34)

• normalisation is not right by a factor of 2, but there is an
elaborate argument for fixing it
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halo formation as a random walk

source: Bond et al. (1991)

• if the density is smoothed with R = ∞, the mean density of
any perturbation is δ = 0 and ρ = ρ̄ = Ωmρcrit

• reduce filter scale: density field will develop fluctuations
• if a density on scale R exceeds the threshold δc, it will
collapse and form an object of mass M = 4πρ0δR3/3

• at a single point in space: δ as a function of R performs a
random walk (for k-space top-hat filter)

• probability of δ > δc is given by erfc(δc/(
√
2σ(M))
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CDM mass functions
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CDM mass function: comoving number density of haloes (redshifts z = 0, 1,2,3)

• shape of mass function: power law with exponential cut-off
• CDM:

• hierarchical structure formation: more massive objects form
later

• cut-off scale M∗ ∝ D+(z)3 (dark energy influence!)
• normalisation: ≃ 100 clusters and ≃ 104 galaxies in a cube
with side length 100 Mpc/h today (a = 1, z = 0)
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cosmological parameter from cluster surveys
• mass function (comoving number density of haloes of mass M)

n(M, z)dM =
√
2
πρ0Δ(M, z)

d ln σ(M)
d lnM

exp
−Δ2(M, z)

2

 dMM2 (35)

with ρ0 = Ωmρcrit
• Δ describes the ratio between collapse overdensity and
variance of the fluctuation strength on the mass scale M:

Δ(M, z) =
δc(z)

D+(z)σ(M)
(36)

• comoving space is a theoretical construct, we observe
redshifts!

N(z) =
ΔΩ
4π

dV
dz

∫ ∞

Mmin(z)
dM n(M, z) (37)

• comoving volume element, with the angular diameter distance
dA:

dV
dz
= 4π

d2A(a)

a2H(a)
(38)
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cosmological parameter from cluster surveys
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galaxy biasing

GIF-simulation, Kaufmann et al.
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galaxy bias models
• galaxies trace the distribution of dark matter
• simplest (local, linear, static, morphology and scale-indep.)
relation:

δn
⟨n⟩ = b

ρ
⟨ρ⟩ (39)

with bias parameter b
• bias models:

• massive objects are more clustered (larger b) than low-mass
objects

• red galaxies are stronger clustered than blue galaxies
• bias is slowly time evolving and decreases

• physical explanation: galaxies form at local peaks in the dark
matter field, and reflect the local matter density directly

• naturally: ξgalaxy(r) = b2ξCDM(r) for the above model

question
are there more galaxies if b is larger?
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galaxy formation: Jeans instability
• galaxies form by condensation of baryons inside potential
wells formed by dark matter

• cooling process: needs to be fast, for overcoming the
negative specific heat of a self-gravitating system

• hydrostatic equilibrium: balance pressure and gravity

dp
dr
= −GM

r2
ρ (40)

• collapse: internal pressure smaller than gravity, which
happens if M is large, or the temperature small (small
pressure)

Jeans mass
Jeans mass is the minimum mass for galaxy formation
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Jeans-scale: derivation

• initially: spherical gas cloud of radius R and mass M
• compress cloud slightly: pressure wave will propagate
through it, and establish new equilibrium
• pressure equilibration = sound crossing time tsound = R

cs
• gravitational collapse = free-fall time scale tgrav = 1√

Gρ

• compare time scales
• tgrav > tsound pressure wins, system settles in new equilibrium
• tgrav < tsound gravity wins, system undergoes spherical collapse

• Jeans length RJ = cstgrav allows to determine Jeans mass MJ:

MJ =
4π
3 ρ

(
RJ
2

)3
=
π
6

c3s
G1.5ρ0.5

(41)
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stability of elliptical galaxies
• stabilisation of elliptical galaxies → velocity dispersion
• Jeans equations are 2 coupled nonlinear PDEs for the
evolution of collisionless systems
• first moment: continuity

∂ρ
∂t + div(ρυ⃗) = 0 (42)

• second moment: momentum equation
∂υ⃗
∂t + υ⃗∇υ⃗ = −∇Φ − div(ρσ2) (43)

• no viscosity, and velocity dispersion tensor
σ2ij = ⟨υiυj⟩ − ⟨υi⟩⟨υj⟩ emulates (possibly anisotropic) pressure

• gravitational potential: self-consistently derived from
Poisson’s equation ΔΦ = 4πGρ, closed system!

• in a virialised elliptical galaxy, σij corresponds to ⟨V⟩ →
stability modern cosmologyBjörn Malte Schäfer
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stability of spiral galaxies
• collisionless fluids can not build up pressure against gravity
• a rotating system can provide force balancing → centrifugal
force

• spin-up: explained by tidal torquing
• spin-parameter λ

λ ≡ ω
ω0
=

L/(MR2)√
GM/R3

=
L
√
E

GM5/2 (44)

• specific angular momentum necessary for rotational support
• λ ≃ 1/2 in spirals in ΛCDM cosmologies, rotation is the
dominant supporting mechanism

question
why is the definition of λ sensible?
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SAURON observations of galaxies

source: SAURON experiment
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galaxy morphologies: ’tuning fork’ diagramme

source: wikipedia
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merging of haloes

• contary to Hubble’s hypothesis: merging activity and tidal
interaction influence galaxy morphologies and convert spirals
into ellipticals → density-morphology relation

• confusing nomenclature remains:
elliptical early-type old stars
spiral late-type young stars

• merging generates heavy haloes from low-mass systems and
wipes out the kinematical structure by violent relaxation
→ bottom-up structure formation

• merging activity depends on the cosmology, and causes the
mass function to evolve
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density-morphology relation

density-morphology relation, source: Dressler et al. (1980s)
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galaxy clusters

Perseus cluster (source: NASA/JPL) Virgo cluster (source: USM)

• largest, gravitationally bound objects, with M > M∗
• quasar host structures at high redshift
• historically

• visual identification (Abell catalogue)
• need for dark matter: dynamical mass ≫ sum of galaxies
(Zwicky)

• large clusters have masses of 1015M⊙/h and contain ∼ 103
galaxies modern cosmologyBjörn Malte Schäfer
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X-ray emission of clusters
• the intra-cluster medium of clusters of galaxies is so hot
(T ≃ 107K) that is produces thermal X-ray radiation

• the plasma is in hydrostatic equilibrium with gravity,
therefore the density profile can be computed

dp
dr
= −GM(r)

r2
ρ→ kBT

m
dρ
dr
+
ρkB
m

dT
dr
= −GM

r2
ρ (45)

for ideal gas with p = ρkBT/m
• determination of mass: from measurement of the density
and temperature profile:

M(r) = −rkBTGm

(
d ln ρ
d ln r

+
d lnT
d ln r

)
(46)

question
what can one do if the cluster is not spherically symmetric?
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X-ray emission of clusters: ROSAT data

VIRGO cluster as seen by ROSAT

• cluster is in hydrostatic equilibrium

• X-ray emissivity is ∝
√
Tρ2 → fuzzy blobs
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scaling relations

scaling relation between LX and M from the ROSAT survey

• virial relation allow the prediction of simple scaling relations
• valid for fully virialised systems, where the temperature
reflects the release in gravitational binding energy
• potential energy ⟨V⟩ ∝ −GM2/R
• size M ∝ R3 → ⟨V⟩ ∝ −M5/3

• kinetic energy ⟨T⟩ ∝ TM
• virial relation 2⟨T⟩ = −⟨V⟩ → T ∝ M2/3

• X-ray luminosity LX ∝ M2
√
T/R3 ∝ M4/3 ∝ T2
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