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DM evidence on one slide
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A short reminder, how to look for WIMPsDirectly Indirectly Accelerators
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A short reminder, how to look for WIMPsDirectly Indirectly Accelerators
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● Local DM distribution
● Backgrounds
● Limited mass range

● Strong astrophysical uncertainties
● DM Distribution in halos
● Product propagation

● Can only produce candidates
● Model dependence: p-p and operators 

● At its infancy
● Promising in some sectors (e.g. axions)
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Direct Detection of Galactic DM
● Our Galaxy is rotating at ~200 km/s at the Sun's orbit
● DM is “standing still”
● Hence, there is a “constant” flux of DM through Earth
● Velocities are non-relativistic, β~10-3
● <𝑣2DM> ≈𝑣2SUN (or close to it)

Search for an interaction with the nucleus! Almost all backgrounds interact with electrons
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Principles of Direct Detection
• DM recoils off a target material, leaving some energy in the form of: - Ionized electrons. - Scintillation light. - Heat/phonons.
• A2 enhancement for the simplest (SI) models

• Movement with respect to the galactic frame implies DM flux,(for ~100 GeV particle)
Signal is collected and the recoil energy is extracted, in the KeV range. 
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Some thumb rules for the interaction
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Nuclear
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Interaction
cross section

WIMP
velocity distribution

Only those WIMPs with velocity above threshold will 
contribute to that energy
For Spin Independent interactions the cross section is 
enhanced by a factor A2 (coherent scattering)

Dark Matter Direct Detection Rates
Expected interaction rateGoal: Observe WIMP interactions with some target material
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Nuclear Form Factor
● When the inverse momentum transfer is large relative to the size of the nucleus, the coherence is reduced
● Nuclear excitations reduce dramatically the cross section, so each isotope has its own nuclear Form Factor 

“Helm” form factor:
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● Simplified picture for the interactions DM ↔ Nucleon
– SI: Scalar interactions (coupling to χ through scalar, vector, tensor part of ℒ)

● Nuclei with high A favorable (mostly if fp≈fn)
– SD: Spin-spin, coupling spin of χ to the nuclear spin from axial vecor part of ℒ

● Targets with large nuclear spin are preferable (odd A)

Spin Independent and Spin Dependent
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Recoil Spectrum 
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Fast progress over ~2 decades
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Exclusion/Discovery plots 

J. Phys. G43 (2016) 1, 013001, 1509.08767



R. Budnik, ISAPP 2019

Exclusion Curves, “ν floor”

DSNB
8B

Atm. ν 
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Minimum velocity
● Each combination of DM mass, target nucleus mass and detector threshold determines vmin, under which no recoil can be detected
● As an example,For Xe target and threshold of 5 keV: 

M χ =100 GeV
M χ =10 GeV
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Dark matter and Earth dynamics: Annual modulation
● In general, the higher 𝑣min, the stronger the relative modulation, but...

● About 7% modulation on <>, can be much higher in signal
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Daily modulation
● During the day the direction of the lab changes, and the direction of the WIMP wind is fixed
● If e.g. particles are partially blocked by Earth, one expects daily modulation
● Modulation moves with 25h56’ - why??
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Uncertainties in Velocity Distributions

MBKingTsallis1.5<k<3.5[Lisanti et al., 2010][Lisanti et al., 2010]

● Halo density around our position is relatively solid
● Escape velocity affects “perfect” velocity distribution, and depends on the assumed halo profile
● High velocities suffer greatest uncertainties
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Recoil Energy Spectrum – beyond vanilla
• Exponentially falling for simple scenarios, however there are complications 

Exponential fall due to nucleus form-factor and velocity distribution
Drop at low energy for inelastic scattering

Elastic scattering
Inelastic scattering



R. Budnik, ISAPP 2019

● Most problematic: muons and muon induced neutrons. MeV neutrons can mimic WIMPs
● Cosmic rays and secondary/tertiary particles:  deep underground laboratories 
● Hadronic component (n, p): reduced by few meter water equivalent (m.w.e.)

μ’s
hadrons

Backgrounds in Dark Matter Detectors

Flux of cosmic ray secondaries and tertiary-produced neutrons in a typical Pb shield vs shielding depth. Heusser, 1995
n produced by fission and (α,n)

n produced by µ’s
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Underground facilities: A must
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Fighting backgrounds - UG
● External γ

– Shielding and self shielding
– Multiple scattering
– Discrimination ER/NR

● Internal α, β
– Cleaning, discrimination

● Neutrons: Fission, μ-generated, α-n
– Multiple scattering, moderators, n-veto

● ν’s: Solar and Atmospheric
● Plus, each detector carries extra unique backgrounds (instrumental, unknown source)

The least radioactive place in the known universe
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Backgrounds – External EM
● External, natural radioactivity: 238U, 232Th, 40K decays in rock and concrete walls of the laboratory => mostly gammas and neutrons from (α,n) and fission reactions 
● Radon decays in air

– passive shields: Pb against the gammas, polyethylene/water against neutrons  
– active shields: large water Cherenkov detectors or scintillators for gammas and neutrons   

Ge detector underground

Without and WITH Pb shield and Rn purging 
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Backgrounds – Internal EM
● Detector materials contain trace amounts of radioactive elements
● Usual suspects: 238U, 232Th, 40K, 137Cs, 60Co, 39Ar, 85Kr, 222Rn ... decays in the detector materials, target medium and shields
● Ultra-pure Ge spectrometers (as well as other methods) are used to screen the materials before using them in a detector, down to parts-per-billion (ppb) (or lower) levels
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A Game of numbers
● how much radioactivity (in Bq) is in your body? where from?

– 4000 Bq from 14C, 4000 Bq from 40K (e- + 400⨉1.4 MeV γ + 8000⨉νe)
● how many radon atoms escape per 1 m2 of ground, per s?

– 7000 atoms/m2 s
● how many plutonium atoms you find in 1 kg of soil?

– 10 millions (transmutation of 238U by fast CR neutrons), soil: 1 - 3 mg U per kg
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Backgrounds – Neutrons
● MeV+ neutrons mimic DM elastic scattering!
● Sources:

– Cosmogenic – μ induced shower, high E neutrons
– Radiogenic: 

● U, Th spontaneous fission  
● (α,n) from plate out of actinides on walls 

● Solutions:
– Shielding
– Size (for multiple scattering)
– Active neutron veto
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Backgrounds – Neutrinos e- recoil
e- + ν → e- + ν ● Practically all neutrinos have enough energy to be relevant

● pp dominate in most scenarios
● “Irreducible” background – single scatter, homogeneous 
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Backgrounds – Neutrinos e- recoil
● Electron will recoil, producing a broad spectrum, uniform in the detector
● Some will pass the discrimination and look like signal!
● Taking LXe as an example 

Baudis et. al., JCAP01 (2014) 044



R. Budnik, ISAPP 2019

● 8B dominate νs at low energy/low mass (<4 keV heavy targets, somewhat higher for light targets)
● DSNB and Atmospheric νs dominate at higher E, but still out of reach of current experiments

Backgrounds – Neutrino-Nucleus recoil

Stigari, New J. Phys. 11 (2009) 105011
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“ν Floor”
● Coherent ν-Nucleus scattering looks like WIMPS
● The uncertainty on that rate puts a pretty hard limitation
● The “floor” has target dependence in the translation to DM cross section 

Billard et. al. (2013)
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Calibration – Never leave home without it
● Calibrating the energy scale: From detectors signals (PMTs readout → Photoelectrons → Energy; Ionization signal → Energy; etc.
● Determining signal and background signal shape and distributions (and discrimination when relevant)
● Following detector stability over long periods of time
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Discrimination

● (Left) Discrimination in a cryogenic Germanium detector
● (Center) Discrimination in a liquid xenon detector
● (Right) Discrimination in a liquid argon detector (two discriminating parameters)
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ThresholdThreshold

SizeSize
8B

DSNB Atm. ν

The Road Map
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The “Size Frontier”
● Target mass is #1 priority

– However: backgrounds, threshold play a role
● Currently led by liquid noble elements:

– XenonXenon: LUX/LZ, PandaX-II, XENON1T/nT
– Argon: DEAP3600, DarkSide, ArDM…

● If looking at non-trivial interaction (e.g. Spin-Dependent), other targets get the lead (e.g. PICO, 19F)



R. Budnik, ISAPP 2019

Scintillation of LXe, LAr
Element Xe ArSinglet 4-5 ns 7 nsTriplet 22-25 ns 1500 nsCost per quanta 9.4 ~13 eV 12.2 ~18 eV

Take home:1. Detectibility2. Discrimination3. Yield
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Single Phase Liquid Noble Element 
● Uses positioning from hit pattern, allows fiducialization
● Possible discrimination through Pulse Shape
● Simplicity helps
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e- 
e- e- 

S1 

S2 

Liquid Xenon 

Gaseous Xenon 

Anode mesh 

Ground mesh 

Cathode mesh 

E ~0.53kV/cm 

Bottom PMTs

Top PMTs

S1: Prompt scintillation NuclearRecoil
S1                 S2

Drift time

χ / n

ElectronicRecoil
S1                 S2

Drift time

γ / βInteraction vertex reconstruction:
•Horizontal from top PMT array
•Vertical from drift time

Discriminationby S2/S1

S2: Proportional scintillation after e- drift and extraction into gas 
The leading tech: Dual Phase Xenon TPC
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Liquid Noble Elements Detectors
● Pros

– Large mass attainable
– Low Background (LXe) or amazing discrimination (LAr)
– Self Shielding
– Single and Dual phase shown to be successful
– “Cheap” 

● Cons
– “High” threshold

● LXe - O(keV) 
● LAr – O(10 keV)
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ThresholdThreshold

SizeSize
8B

DSNB Atm. ν

The Road Map
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Low mass DM
● For masses below a few GeV, the “classical” NR and discrimination fails, owing to the small energy deposit
● Lowering the threshold is key
● Some novel ideas may open the gate for “high threshold” experiments as well (but at a cost):

– Bremmstrahlung
– Migdal effect
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● Two proposed processes can “translate” a NR into a low energy ER through inelasticity of the interaction
Bremsstrahlung and Migdal:Lowering the threshold for NRs  

Bremsstrahlung: Kouvaris & Pradler (2017), McCabe (2017)

Migdal effect: Ibe et. al. (2018), Dolan et. al. (2017) 
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● Brem (left) and Migdal (right) @ σ=10-35 cm2
Brem & Migdal observables
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e- scattering: New access to LDM
● Kinematics of a free electron gives O(1 eV) recoil
● Approaches:

– Very low gap (i.e. many quantas for the <1 eV): Superconductors
– Bound electrons - “violate” momentum conservation by inelasticity
– Amplify a single electron

● Main problem: backgrounds are the same as the signal…
– (BUT) the rates are “low”: small ΔE, small exposure.
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Crystals for LDM - Calorimeters
● Low threshold
● Can be combined with other channels (ionization, scintillation)
● Hard to reach large target mass
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Directional Detection
● Signal preferrably arrives from Cygnus direction
● If a detector can tell the direction of recoiled particle, one can try to pinpoint “Galactic Origin” which is a smoking gun

100 GeV WIMP NR Simulated events

Billard et. al. 2010
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Directional Detectors
● Pros

– Can pinpoint Galactic origin
– Can remove “irreducible” backgrounds
– Can give direct access to properties of DM

● Cons
– DILUTE: not competitive with mass
– “High” threshold
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● The easiest way: Set a “box” where signal (or part of it) is expected, and find the mean expected background count
– Simple Poisson statistics gives discovery/limit 
– Limit set at 90% CL
– No agreed “discovery” threshold 

● What happens if the background is unknown? (Yellin, 2002)

Word About Statistics

Max-Gap method, closed formula for a given CL Optimum Interval method:When there are “many” events it is more beneficial to choose Max Gap of n events 
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Profile Likelihood

Poisson term S1/S2/r shapes Nuisance parameter constraints

● Taking into account shapes increases the sensitivity significantly
● Bringing unknowns and uncertainties in a mathematically correct way into the inference through nuisance parameters
● Adopting HEP methods but adapting for DM needs: Low statistics, calibrations vs. “known” response

Cowan et. al. Eur.Phys.J. C71 (2011) 1554 (2011); Priel et. al. JCAP 1705 (2017) no.05, 013
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