SRF cavity operation at the European XFEL.

Jan Timm, Ayla Nawaz Hamburg 22.2.2019

Self Introduction.

Jan Timm

- New at MSK since August 2018
- But I'm just getting started, I was in parental leave for 4 months
- I have done before... Gamma and X-ray spectroscopy
 - COBRA Experiment
 - Neutrinoless double beta decay
 - Pulse shape analysis of coplanar grid CdZnTe detectors
 - MC simulations on neutron transport and coincidence analysis
 - DAQ System for energy dispersive detectors based on MicroTCA.4
 - Collaboration between MSK and PETRA III Ext/P24
 - Moving Pulse shape trigger, digitally based connecting CFD with energy reconstruction
 - Firmware and software
 - High energy resolution at high count rates
 - In principle for all detector types
 - Hans-Thomas Duhme: DRTM-AMP10

SRF cavity operation at the European XFEL

- 808 superconducting cavities
- 10 pulses per second
- ~ 700 Million pulses a day
- 1.5 GB/s data from EM field measurements

Overall aim

- Decrease downtimes
- Predict problems
- Monitor overall performance

General Conditions

- Online and Offline analysis
- For every cavity we need forward, reflected and probe signal (ampl., phase) and some other values
- Based on ChimeraTK::ApplicationCore
 - → and the other big goal:
- Looking at other channels, detecting trips and providing the data for a GUI,
 - "Trip Event Logger"

Getting data

Online

- ChimeraTK,
 DeviceAccess with
 DOOCs backend
- Macropulse consistencies is not given jet

Offline

- DAQ snapshot data
- To access data from .raw files in C/C++, you need user_test tool and a .xml file
- Converter to hdf5

Data analysis

- MATLAB generated C code
- Is too slow
- Implement cavity analysis by hand
- alpaka Abstraction Library for Parallel Kernel Acceleration (running CPU, GPU, FPGA?)

→ Need to deal with 'Big Data', but also with 'Fast Processing'