What about Big Data and all that fuzz around the buzz?

Big Data Meets Accelerator Controls

Tim Wilksen

Beschleuniger-Betriebsseminar Travemünde, 22.02.2019

Topics

Big Data Meets Accelerator (Controls)

01 Brief excursion

- Ever growing data volume
- (Futile) attempt to define Big Data

02 Zooming in on DESY and its accelerators

- Classic approach of acquiring data in controls
- A different way FLASH Data Acquisition
- Archives and databases

03 Beyond FLASH

- EuXFEL implementation of the FLASH-Style DAQ
- Some Stats and Experiences
- Shortcomings and such
- A look into the future (of the EuXFEL DAQ)

04 Reaching out

- Projects and Initiatives
- Helmholtz POF IV MT and DMA

05 Summary

Conclusions

Brief Excursion

Ever Growing Data Volume

Business et al.

- Global Datasphere =
 cloud and data centers + enterprise
 infrastructure + IoT, PCs, Phones will
 reach 175 ZB by 2025 up from 33 ZB in
 2018
- Real-time data up to 30% of global datasphere by 2025
- Shipped storage device capacity in the last 20 years was about 7 ZB – this will expand to 22 ZB in the next seven years
- Google: 10 15 EB managed data (estimated)
- Amazon AWS/S3: 2 x 10¹² Objects (2013)
- Facebook: 500 TB/d input, 300 PB stored (2016)

Ever Growing Data Volume (cont'd)

HEP et al.

Big Data

A (futile) attempt for a definition

The term "big data" isn't really new, but was popularized in the 90's by SGI chief scientist, J Mashey. ["The Origins of 'Big Data': An Etymological Detective Story", S. Lohr, NYTimes, 02/01/2013]

First stop, Wikipedia:

"Big data refers to **data sets** that are **too large or complex for traditional data-processing application software** to adequately deal with. [...] Big data challenges include capturing data, data storage, data analysis, search, sharing, transfer, visualization, querying, updating, information privacy and data source."

Gartner, 2011: "Big data is **high-volume**, **high-velocity and/or high-variety** information assets that demand cost-effective, innovative forms of information processing that enable enhanced insight, decision making, and process automation."

Big Data (cont'd)

A (futile) attempt for a definition

Gartner's Hype Cycle 2018:

So there is Deep Learning, Artificial General Intelligence, Al PaaS, Knowledge Graphs, Digital Twin(!), IoT Platform, asf.

But...

"Big Data" term is gone on last year's hype cycle:

It is rather a set of technologies and methods now than an emerging technology per se.

Hype Cycle for Emerging Technologies, 2018

Time

gartner.com/SmarterWithGartner

Source: Gartner (August 2018)
© 2018 Gartner, Inc. and/or its affiliates, All rights reserved.

Gartner

Big Data (cont'd)

A (futile) attempt for a definition

Now, what about particle accelerators and "Big (Science) Data"?

Zooming in on DESY and its accelerators

Accelerator Controls Data*

Let's do a step back first ...

- Monitoring and recording data from accelerator and experiments is essential for commissioning, operations, performance analysis and any kind of R&D work.
- Implementations often seen, can be categorized as follows:
 - a) The "classic approach"
 - Clients collect data from any device server or any other kind of data source.
 - Client can be rich client application, another server, middle layer server or a graphical interface (operator)
 - Flat channel-based data model – not necessarily accelerator-based
 - Archiving, logging facility or database.

- b) The "subsystem approach"
 - Use standalone
 acquisition for individual
 subsystems (e.g. turn-by turn BPM DAQ, OTR
 image acquisition),
 specifically for fast
 systems and bulk data.
 - Often ommercial packages and tools for standalone acquisition
 - Potentially complex data model (structures)
 - File-based storage

Works, but synchronization and efficiency can be an issue (a), or combination of too many different data formats and sources (b).

→ Revisit control system model and data acquisition approach ...

^{*} not considering accelerator simulations and its data here

FLASH Data Acquisition

Integrate DAQ into control system middle layer

- Derived conceptually from a high-energy physics experiment DAQ
- Data has event-like structure recorded at shot repetition rate (10 Hz)
- Data tagged with shot/train ID allows for easy synchronization
- Data from fast, triggered sources sync'd together with slow information
- **Event record** holds all train related and bunch-resolved data
- Central shared memory keeps brief history of shot/pulse data
- Middle layer applications perform near real-time/online analysis
- Results can be inserted into event records in addition to other data
- RAID cluster for intermediate storage w/ proprietary file format
- C++-, Java-, MATLAB-API for data extraction and batch processing;
 Java-based data browser and extraction tool
- Run-based configuration and bookkeeping of data

Archives and Databases

Local, central, DB or not to DB

- DESY accelerator control systems utilize full range of archiving types:
 - Local archives on disk with server applications data is accessible through server API itself
 - Central archives (file-based, RDB) with data being collected from various data sources, retrievable via dedicated tool
 - Configuration databases (files or RDB) used for configuration of machine or controls devices - available through dedicated API
 - Fast and bulk data from FLASH-type data acquisition –
 proprietary file format, available from disk or dCache
 (tape) through Java-based tools (no batch mode) or
 C++/MATLAB API (batch mode)
 - Other data acquisition like tools, e.g. MATLAB, Python, SDDS usually stored as flat files on disk

FLASH Data Acquisition ...

... and Archives

What about large-scale accelerators, like the EuXFEL?

Beyond FLASH

EuXFEL DAQ

Implementation of FLASH DAQ at EuXFEL

- Same concept, just larger ...
- Five instances plus test one
 - Diagnostics DAQ
 - LLRF DAQ x 2
 - Virtual XFEL instance
 - Laser System DAQ
- Multiple input streams
- Mission-critical ML services
- Clustered disk pool for data
- dCache for dedicated storage

EuXFEL DAQ (cont'd)

Some Stats and Experiences

- More than 10 million DOOCS control system in accelerator namespace
- About 700.000 local DOOCS archives plus large TINE central archive
- Timing system provides synchronization for data acquisition
- About 250 MicroTCA systems online as DAQ FE sender with 20000 channels
- About 1.5 GB/s input rate from FE producing 130 TB/d uncompressed data or up to 30 TB/d compressed data

EuXFEL DAQ (cont'd)

Shortcomings and such

- A rate of 30 TB/d would result in roughly 9 PB/y ...
- ... we can't keep the data! Diagnostics data for 2 weeks online, LLRF data a couple of days ...
 - Requires dedicates storage system O(PB) preferably on IT premises with easy access on dedicated computing nodes
- No dedicated Ethernet infrastructure for DAQ
 - Interference with controls and user services
- Clumsy interface for accessing and extracting offline data
 - Historically the more convenient interfaces were lacking performance, re-attempt to utilize HDF5 format
- Quite static configuration capabilities. Not possible to add data sources on-the-fly, requires restart.
- Run configuration and file management is only half the story, missing meta database with search capability
- Unused potential: snapshot, post-mortem analysis, predictive analytics, preventive maintenance, trend and fault analysis, anomaly detection ...

Revisit and re-evaluate concepts

Revised Archiving Concepts

Future archiving and data acquisition

- Huge amount of data to come from novel diagnostics (i.e. current CRISP and KALYPSO detectors)
- Increasingly complex and intelligent front-end electronics enables low-level processing capabilities
- Performance, reliability and availability are key parameters for machine operation
 - significantly enlarge information collection for monitoring and analytical purposes:
 - Configuration management of hardware (electronics, utilities, ...) and firm-/software
 - Machine configuration management
 - Performance tracking
 - Fault detection and post-mortem analysis
 - Predictive analytics and preventive maintenance
 - Automation for reproducibility
- Don't forget to categorize and classify the data, data reduction is crucial with this high volumes!
- Scalability of data collection, processing and archiving
- Easiness of accessing and using online and archived data

Leverage "Big Data" technologies and methods

Revised DAQ Concepts (I)

MicroTCA-based DAQ

- High rate (PETRA IV) and continuous wave (CW-XFEL) operation:
 - → Requires capable CPU AMC (memory, processing power, throughput) -> MCH bandwidth
 - → Requires faster Ethernet CPU/MCH connection via >100GB Ethernet
 - → More CPU power per system distribute AMC readout among several CPU modules
 - → More powerful FPGA shifts applications from CPU to FPGA for data handling and processing

- Use additional layer for acquiring data set up with high-performance MicroTCA-based systems and CPUs
- Requires upgraded MicroTCA standard covering PCIe 5th gen and beyond
- More flexibility in directing, configuring and distributing data flow to server farm
- Allows for intermediate, online data access of data subsets

Revised DAQ Concepts (II)

Streaming Architecture i.e. ...

Wolfram Wingerath*, Felix Gessert, Steffen Friedrich, and Norbert Ritter Real-time stream processing for Big Data

Utilize "Big Data" technologies:

- Classification of data crucial to get out valuable information
- Streaming architecture optimized for low latency or high throughput
- Consolidate data archiving concepts time series databases and in-memory databases are prominent choices here; suitability has to be evaluated
- Near-online analysis capabilities
- Control-system independent frameworks enable usage across accelerator and experiment facilities
- Several approaches already made, in the context of high-energy physics experiments, accelerator controls (CERN), photon science experiments

Revised DAQ Concepts

"Big Data" and such

We might not be alone with this ...

Reaching out

Reaching Out

More Projects on Big Data, Machine Learning, DAQ, ...

- Machine Learning Workshop
 - SLAC 2018
 - PSI 2019

- Amalea Helmholtz Innovation Pool Project (2019/2020) DESY, HZB, HZDR, KIT
 - ML application to projects in HEP, photon science and accelerators (I. Agapov)
- Helmholtz OCPC (Office of China Postdoc Council)
 - FS-FLASH proposal on Deep Reinforced Learning using machine and experiment data at FLASH (K. Tiedtke et al.)
- DASHH "Data Science in Hamburg Helmholtz Graduate School for the Structure of Matter" Uni HH,
 TUHH, DESY + 5
- CDCS "Center for Data and Computing Science"
- Helmholtz-Inkubator Information & Data Science
 - Think-tank, interdisciplinary and innovative pilot projects e.g. Helmholtz Analytics Framework

Data Management and Analysis - DMA

Matter and Technology Topic in POF IV

Data Management and Analysis - DMA

DMA STRUCTURE

ST1: The Matter Information Fabric

- IT infrastructure (Hard- & Software) for facilities
- Automization of Data Lifecycle Management (LK II)
- Solutions f
 ür Communities

ST2: The Digital Scientific Method

- Matter-specific research in Data Analysis & Simulation methods
- e.g. Machine Learning, Simulation, Visual Analytics, Scientific Workflow
- Developing methods für heterogeneous HPC, HTC, I/O for Matter applications

ST3: The Digital Experiment and Machine

- Start-to-End Simulations (Machine/Interaction/Detectors)
- Fast feedback & machine control ("Human in the Loop")
- Quantifying data quality, meta data acquisition & analysis

Conclusions

Conclusions

... and Outlook

- "Big data" has matured, yet accelerator (controls) community has to catch up with industries and business
- Necessity to re-think accelerator archiving concepts in the view of PETRA IV and EuXFEL (CW)
- Huge potential in accelerator controls data within the context of performance, reliability and availability
 - Fault prediction and detection, anomaly detection, health monitoring, performance analysis, ...
- Major functionality of a modern, large-scale accelerator control and data acquisition system has to be implemented in software utilizing massive FPGA, GPU and server processing power – huge effort with respect to required resources
- Upcoming projects and collaborations with other Helmholtz centers and international labs
- Future large-scale accelerator control systems present a challenging yet exciting area for research and development