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Content

▪ Introduction — needs of 4G light sources 

▪ Very high level  “overview” of ML/Deep learning 

▪ What can we expect to achieve with PETRA IV?
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Some historical context

K-means prediction of FEL power at FLASH 
Analysis of machine setting files for 2 years  
from Agapov et al. DESY 17-054 

Data visualisation. Might be nice to have 
But in no way critical

ML-assisted optimisation 

Promise of faster and more efficient 
hyperparameter tuning
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Needs of 4G sources

▪ ML first looked at in the FEL optimisation (and later failure prediction) context 

▪ FEL tuning has a direct impact on user operation and plays central role 

▪ FELs are newer machines, more adequate diagnostics and DAQ 

▪ 3G storage rings much more stable in operation than FELs. Some optimisation 
is required but effort incomparable to an FEL. Most optimisation work (lifetime, 
Dynamic aperture, injection efficiency) has little direct impact on users 

▪ Many labs including us (plan to) upgrade to 4G storage rings 

▪ To proceed we should answer following questions (this talk is a first attempt) 

▪ 1.What difference can we expect in operation? 

▪ 2. Where does ML fit? — understand what to expect
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Needs of 4G sources - difference to 3G
▪ Reliability demands grow (95% -> 99%) 

▪ But machines are more sensitive with larger number of components 

▪ We would like to meet availability goals and provide required beam-hours to users 

▪ But at the same time we would like to keep doing accelerator physics and spend 
dedicated machine time on studies rather than machine setup 

▪ This could only be successful if all standard procedures are highly automated 

▪ Startup of components (magnet cycling etc.) 

▪ Orbit correction 

▪ BBA 

▪ Optics measurement and correction 

▪ Methods are well understood but (high-level) controls software not designed for 
autonomous operation
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Big data and machine learning
▪ HEP pioneered BIG data (HERA, LHC) along with finance and insurance 

▪ Internet businesses caught up and outperformed in 2010s 

▪ Lots of pioneering AI research in the 60s and 70s, NN only a small subset 

▪ Deep learning (large multilayered NN) largely impractical until about 10 years ago (don’t 
listen to HEP physicist who did PhDs in the 90s) 

▪ At the core of deep learning – statistical fitting but quantity becomes quality, in combination 
with big data (usually > 10000 distinct training examples) and computing power 

▪ Key to success  

▪ Well-posed problem (from general AI to tangible problems in automation, 
advertisement, finance) 

▪ High performance computing (many orders of magnitude) 

▪ Ubiquitous data 

▪ Some improvement on algorithms resulting from sufficient experimentation 

▪ Economics (increase in 5% in performance/cost will wipe competitors out in most 
large-scale industries, not the case with light sources, FELs, or HEP)
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Infrastructure – computing power and GPUs

Cray-2 1.9 GFLOPS (1985)

Intel Pentium III (2000) 
2 GFLOPS

5 orders of magnitude between most powerful computer in 1985 
and a 5K consumer card (5 min training -> 1 year)
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Infrastructure – data collection
▪ …



!9

Infrastructure – Software stack

▪ ML industry-standard software stack is now freely available and easy to learn (data is 
the asset, not the software) 

▪ Python, pylab, Jupyter  

▪ Scikit-learn  

▪ Pandas 

▪ Tensorflow and keras 

▪ MATLAB used initially for ML application prototyping but now more or less 
completely abandoned
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Primitive tensorflow example
Learns a simple 2D function
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NN training is highly scalable
▪ …
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Training (backprop) — lots of parallelizable linear algebra
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Can feed many training examples in parallel 
Perfect scalability
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ML and beam dynamics

▪ Although single-particle beam dynamics well developed, several directions still 
considered art, such as: 

▪ Multi-parameter matching in high dimensions (e.g. MBA. cell design) 

▪ Nonlinear aberrations (beyond simple ideas like low-order achromats, 
reducing sextuple strength, -I) 

▪ A common line of reasoning — build fast “surrogate models” based on NN 
trained on simulated data
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Sanity check — FODO
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Sanity check — FODO

The trained NN generalises surprisingly well beyond training set parameters! 
However only within a certain range, and validity range needs checks 
Practical application not clear — some real-time FPGA-based response matrix 
calculation for non-linear, time-dependent situations etc. ?

QF

QD

Stability diagram check on the test set 
QF in [0,5] QD in [-5,0]  L=3.9 

Training set was  
QF in [0,1] QD in [-1,0]  L in [0,2]
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Sanity check — Henon map
2-layer NN trained to generate Henon map based on nonlinearity parameter as input

NN can generate images which look like phase portraits also capturing rough 
dependency on the non-linearity parameter 
It is however very hard to train the NN to reproduce fine features 
Practical application not clear (unless sold as art)

Portrait of Edmond Belamy 
Generated by GAN 
Sold at Christies for $432,500, 2018

Phase portraits

Generated by NN
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Single-particle dynamics perspectives

▪ Deep learning might be useful for single-particle dynamics analysis 

▪ The key is however in computation speed, not directly related to ML 

▪ Questions of calculating DA, MA, low-dimensional sextuple strength 
optimisation etc. are now routinely solved within minutes to hours on ~1000-
core machines (required lengthy dedicated studies in the 1990s)  

▪ We could gain another 1-2 orders of magnitude in performance with tracking 
on GPU — GPU version of Sixtrack under development at CERN and tests 
with PETRA IV lattice ongoing 

▪ With super-massive computations NN might be a way to represent simulated 
results along with other statistical tools
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ML and collective effects
▪ One of less understood areas of storage rings is high-charge limitations 

▪ Relevant for PETRA IV timing mode 

▪ Relevant for many lower-energy machines pushing for higher current (500 mA 
NSLS-II, MAX-IV) or coherent radiation modes 

▪ Large-scale simulation/measurement campaigns + model fitting could be 
useful (some work done at KIT)

Experimental microbunching  
instability studies at KARA/KIT

NLSL-II bunch lengths vs. intensity 
from A. Blednych, BCTLESR 2019 
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ML and optics measurement

▪ Straightforward applications of optics measurement (especially all quick 
methods like multi turn and AC) often performs poorly 

▪ Need some expertise to process data, e.g. remove bad BPM readings 

▪ ML techniques are looked at to speed that up 

▪ We collaborate with the CERN group on optics measurement and further 
machine studies at PETRA III planned
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Big data and operational statistics
▪ A typical activity is to figure out what correlates to what through archive mining 

and try to improve things 

▪ Problems: 

▪ Unprocessed data from P3 archive mostly garbage  (G. in g. out for any 
algorithm).  

▪ Lengthy manual processing  required to arrive at a meaningful dataset 

▪ Amount and quality of data after processing could be surprisingly low in 
comparison to the raw data 

Typical pull from archive 
All temperature sensors, Aug 22-Nov30 
2018 
Fraction of channel data missing (25%) 
Unmatched timestamps 
Data archived on thresholds 
Bad readings/datapoints 
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Prototyping ML workflow — software stack

PyTine
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Conclusion and Outlook
▪ Exciting opportunities in ML, but need to boost controls, diagnostics (monitoring) and 

expertise in “data science” to make use of it 

▪ Expect that the outcome is unexpected, work should be well aligned with lower-risk 
R&D and more critical machine issues 

▪ For next generation (PETRA IV) need to completely rework data acquisition and 
curation 

▪ ML should be a part of larger automation campaign  

▪ The goal (and challenge) of automation is to free personnel and machine time for 
studies given high pressure on availability and reliability  

▪ Activities being launched to address that (some prototyping ongoing; postdoc hiring in 
progress. PETRA IV HLC group launched from late March 2019) 

▪ Some level of collaboration pursued with other labs (BESSY, KIT/KARA, SLAC/
SPEAR3, CERN, MAXIV) 

▪ In ML-centric programming paradigm data is the most important asset 

▪ Human brain 1011 neutrons. Deep nets 102 -103 . Don’t expect too much intelligence 
(from NN)


