QCD and Monte Carlo simulation II

H. Jung (DESY, University Antwerp) hannes.jung@desy.de

http://www.desy.de/~jung/qcd_and_mc_2009

Video recordings

Index of ftp://webcast.desy.de/QCD-MC	w History Bookmarks Tools Window Help 💩 🧐 🗲 🚥 🗐 💭 😫 🤉							
()) C (X) (ftp://webcast.desy.de/QCD-MCsim/	😭 🔻) e 🕻 🕻 🤇 Google			Webcast Ar	chiv			
Most Visited 🔻 H1 Fast Navigator DESY CMS Homepage phone book HERA LHC workshop HERA Monte Carlo P HERA - LHC worksh eds07 Physic			C (X) (A) (http://webcast.desy.de/webcast_archiv.htm.en					
		H1 Fast Naviga	ator DESY CMS Homepage	phone book HERA LHC workshop	HERA Monte Carlo P.			
				prote soon that are not hopen.				
Index of ftp://webcast.desy.de/QCD-MCsim/		For Live Stream and Archive Videos the RealMedia format is used						
👔 Up to higher level directory		vvebCa		REALPLAYER-DOWNLOAD				
Name Siz	l ast Modified	Live: There is currently no Live Streaming						
QCD_MCsim_1_1_Pod.mp4 392	31 KB 14.09.1948 9:54:00 Uhr							
QCD_MCsim_1_2_IPod.mp4 533	65 KB 14.09.1948 10:16:00 Uhr							
CU_MCSIM_1_3_IP00.mp4 43b	94 KB 14.09.1948 10:45:00 Uhr							
		Archive:						
			Committees					
			Colloquia					
			DESY Intern					
			Lectures	Academic Training Lectures				
			Seminare	Heinrich Hertz Lectures				
			Conferences	Willibald Jentschke Lectures				
			ausserhalb DESY	Colour Dipoles in High Energy Collisions				
			detailed search	Terascale Monte Carlo School 2008				
				Terrascale Monte Carlo School 2009				
				OCD and Monte Carlo simulation				
					1			

Literature

E Fie

Applications of Perturbative OCD

R. D. Field Department of Physics University of Florida

ADDISON-WESLEY PUBLISHING COMPANY ADJISON-WESLEY PUBLISHING COMPANY The Advanced Book Program Redwood City, California • Menlo Park, California • Reading, Massac New York • Don Mills, Ontario • Wokingham, United Kingdom • Am Bonn • Sydney • Singapore • Tokyo • Madrid • San Juan

Collider PHYSICS UPDATED EDITION

PHYSICS REPORTS (Roview Section of Physics Letters) 81, No. 1 (1982) 1-129. NORTH-HOLLAND PUBLISHING COMPANY

	Guido A	Altarelli	
Initato	di Fisica, U	niversità di Roma.	
Istituto Nazionale	di Física Nu	cleare, Sezione di Roma, Italy	
	Received 20	July 1981	
Contents:			
1. Introduction	3	5. Leptoproduction beyond the leading logarithmic	
2. Gauge theories and the QCD Lagrangian	5	approximation	50
3. Asymptotic freedom	10	6. The photon structure functions	64
3.1. Asymptotic scale invariance and the renormalization		7. The Sudakov form factor of partons	68
group equations	11	8. Jets in hptoproduction and their transverse momentum	70
3.2. The running coupling in asymptotically free theories	15	9. e*e" annihilation	77
3.3. The beta function in one and two loops	18	9.1. The total hadronic cross section	77
3.4. Asymptotic expansions	21	9.2. Scaling violations for fragmentation functions	80
4. Inclusive leptoproduction in the leading logarithmic		9.3. Annihilation into real photons	90
approximation	25	9.4. Jets	91
4.1. The QCD improved parton model	26	10. Heavy quarkonium decays	100
4.2. The general evolution equations	32	11. Drell-Yan processes	104
4.3. The splitting functions and their physical		12. Electro-weak form factors of hadrons	113
interpretation. The factorization theorem	34	QCD effects in weak non leptonic amplitudes	116
4.4. Explicit solution near x = 1	42	14. Outlook	120
4.5. Some properties of moments	-44	References	121
4.6. Polarized parton densities	47		
4.0. Poanzed parton densities	•/		

Single orders for this issue
PHYSICS REPORTS (Review Section of Physics Letters) 81, No. 1 (1982) 1-129.
Copies of this issue may be obtained at the price given below. All orders should be sent directly to the Publisher. Orders must be accompanied by check.
Single issue price Dfl. 66.00, postage included.

Outline of the lectures

- Intro to Monte Carlo techniques and structure of matter
- 17 July DGLAP and small x: solution with MCs
- 23 July Small x, CCFM and BFKL
- 24 July W/Z production in pp and soft gluon resummation
- Lectures will be recorded and made available immediately
- Exercises in the afternoons: 14:00 16:30 in sem 1
 Assistant: A. Grebenyuk
- Discussion forum online:
 see link from web page or

http://www.terascale.de/research_topics/rt1_physics_analysis/monte_carlo_generators/discussion_forum/discussion_forum_lecture_2 _monte_carlos

Requests to you ...

- If things go wrong .. lecture is too easy... too trivial ... too complicated, too chaotic or too boring ...
- PLEASE complain immediately !
- PLEASE ask questions any time !

Questions from last lecture and last exercise ? Recap from last lecture ...

recap: Higher order corrections to DIS

- lowest order: $e + q \rightarrow e' + q' \quad \mathcal{O}(\alpha_s^0)$
- higher order: $e + q \rightarrow e' + q' + g$, $e + g \rightarrow e' + q + \bar{q} \quad \mathcal{O}(\alpha_s^1)$
 - What is the dominant part of the x-section ?
 - Investigate full x-section of QCDC and BGF
 - dominant part comes from small transverse momenta ...
 - ullet rewrite x-section in terms of $\,k_{ot}$
 - use small *t* limit:

$$\frac{d\sigma}{dk_{\perp}} = \frac{d\sigma}{dt} \frac{1}{(1-z)} = \frac{1}{(1-z)} \frac{1}{F} dLips |ME|^2$$
$$= \frac{1}{(1-z)} \frac{1}{16\pi} \frac{1}{\hat{s} + Q^2} \frac{1}{\hat{s}} |ME|^2$$

recap: Inelastic Scattering: x-section, phase space, ME

- Cross section definition: $d\sigma = \frac{1}{F} d\text{Lips} |M|^2$
- with initial flux $F=4\sqrt{(p_1p_2)^2-m_1^2m_2^2}$
- and Lorentz invariant phase space

$$dLips = (2\pi)^4 \delta^4 (-p_1 - p_2 + \sum_i p_i) \sum_i \frac{d^4 p_i}{(2\pi)^3} \delta(p_i^2 - m_i^2)$$
$$dLips = (2\pi)^4 \delta^4 (-p_1 - p_2 + \sum_i p_i) \sum_i \frac{d^3 p_i}{(2\pi)^3 2E_i}$$
$$dLips = (2\pi)^4 \delta^4 (-p_1 - p_2 + \sum_i p_i) \sum_i \frac{1}{(2\pi)^3} \frac{dp_i^+}{p_i^+} d^2 p_{t\,i}$$

recap: partonic cross sections

Flux for virtual photons:

$$F = 4\sqrt{(p_1.p_2)^2 + m_1^2 m_2^2} = 2(\hat{s} + Q^2)$$

x-section with virtual photons:

$$\frac{d\sigma}{dt} = \frac{1}{16\pi} \frac{1}{\hat{s}^2} |ME|^2 \to \frac{1}{16\pi} \frac{1}{\hat{s} + Q^2} \frac{1}{\hat{s}} |ME|^2$$

real photons

recap: kinematics

$$k_{\perp}^{2} = \frac{-\hat{t}\hat{s}}{\hat{s} + Q^{2}} = -t\left(1 - z\right)$$

recap: QCDC - contribution

$$\begin{split} |M|^2 &= 32\pi^2 \left(e_q^2 \alpha \alpha_s \right) \frac{4}{3} \left[\frac{-\hat{t}}{\hat{s}} - \frac{\hat{s}}{\hat{t}} + \frac{2\hat{u}Q^2}{\hat{s}\hat{t}} \right] \\ &= 32\pi^2 \left(e_q^2 \alpha \alpha_s \right) \frac{4}{3} \frac{-1}{t} \left[\frac{Q^2(1+z^2)}{z(1-z)} + \frac{1}{z(1-z)} \right] \end{split}$$

integrate over kt generates log, BUT what is the lower

$$\frac{d\sigma}{dk_{\perp}^2} = \sigma_0 e_q^2 \frac{\alpha_s}{2\pi} \frac{1}{k_{\perp}^2} \left[P_{qq}(z) + \cdots \right]$$
$$P_{qq}(z) = \frac{4}{3} \frac{1+z^2}{1-z} \quad \sigma_0 = \frac{4\pi^2 \alpha}{\hat{s}}$$

$$\sigma^{QCDC} = \sigma_0 e_q^2 \frac{\alpha_s}{2\pi} \left[P_{qq}(z) \log\left(\frac{Q^2(1-z)}{\chi^2 z}\right) + \cdots \right]$$

recap: boson gluon fusion

$$\sigma^{BGF} = \sigma_0 e_q^2 \frac{\alpha_s}{2\pi} \left[P_{qg}(z) \log\left(\frac{Q^2(1-z)}{\chi^2 z}\right) + \cdots \right]$$

Splitting functions in lowest order

recap: $O(\alpha_s)$ contribution to F_2

• divergency for $k_{\perp} \rightarrow 0$ or $\chi \rightarrow 0$

$$\begin{aligned} \frac{F_2}{x} &= \sum e_q^2 \int \frac{dx_2}{x_2} q_i(x_2) \delta\left(1 - \frac{x}{x_2}\right) \\ &+ \\ q_i(x_2) \left[\frac{\alpha_s}{2\pi} P_{qq}\left(\frac{x}{x_2}\right) \left[\log\left(\frac{Q^2}{\chi^2}\right) + \log\left(\frac{1-z}{z}\right) + \ldots\right] + C_q(z,\ldots)\right] \\ &+ \\ g(x_2) \left[\frac{\alpha_s}{2\pi} P_{qg}\left(\frac{x}{x_2}\right) \left[\log\left(\frac{Q^2}{\chi^2} + \log\left(\frac{1-z}{z}\right) + \ldots\right] + C_g(z,\ldots)\right)\right] \end{aligned}$$

Collinear factorization: DGLAP

• introduce new scale $\mu^2 \gg \chi^2$ and include soft, non-perturbative physics into renormalized parton density:

$$q_i(x,\mu^2) = q_i^0(x) + \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} \left[q_i^0(\xi) P_{qq}\left(\frac{x}{\xi}\right) + g^0(\xi) P_{qg}\left(\frac{x}{\xi}\right) \right] \log\left(\frac{\mu^2}{\chi^2}\right)$$

DokshitzerGribovLipatovAltarelliParisi equation:

V.V. Gribov and L.N. Lipatov Sov. J. Nucl. Phys. 438 and 675 (1972) 15, L.N. Lipatov Sov. J. Nucl. Phys 94 (1975) 20, G. Altarelli and G. Parisi Nucl.Phys.B 298 (1977) 126, Y.L. Dokshitser Sov. Phys. JETP 641 (1977) 46

$$\frac{dq_i(x,\mu^2)}{d\log\mu^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} \left[q_i(\xi,\mu^2) P_{qq}\left(\frac{x}{\xi}\right) + g(\xi,\mu^2) P_{qg}\left(\frac{x}{\xi}\right) \right]$$

BUT there are also gluons....

$$\frac{dg(x,\mu^2)}{d\log\mu^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} \left[\sum_i q_i(\xi,\mu^2) P_{gq}\left(\frac{x}{\xi}\right) + g(\xi,\mu^2) P_{gg}\left(\frac{x}{\xi}\right) \right]$$

DGLAP is the analogue to the beta function for running of the coupling

Collinear factorization generalisation of parton model result to QCD !!!

Collinear factorization

- $F_2^{(Vh)}(x,Q^2) = \sum_{i=f,\bar{f},G} \int_0^1 d\xi C_2^{(Vi)}\left(\frac{x}{\xi},\frac{Q^2}{\mu^2},\frac{\mu_f^2}{\mu^2},\alpha_s(\mu^2)\right) \otimes f_{i/h}(\xi,\mu_f^2,\mu^2)$
 - Factorization Theorem in DIS (Collins, Soper, Sterman, (1989) in Pert. QCD, ed. A.H. Mueller, Wold Scientific, Singapore, p1.)
 - hard-scattering function $C_2^{(Vi)}$ is infrared finite and calculable in pQCD, depending only on vector boson V, parton *i*, and renormalization and factorization scales. It is independent of the identity of hadron h.
 - pdf $f_{i/h}(\xi, \mu_f^2, \mu^2)$ contains all the infrared sensitivity of cross section, and is specific to hadron h, and depends on factorization scale.
 - Generalization: applies to any DIS cross section defined by a sum over hadronic final states but be careful what it really means....
 - explicit factorization theorems exist for:
 - Inclusive and diffractive DIS (... see above....)
 - Drell Yan (in hadron hadron collisions)

• single particle inclusive cross sections (fragmentation functions) H. Jung, QCD and MCs II, DESY - HH, 17 July 2009

Factorization proofs and all that ...

• About factorization proofs (Wu-Ki Tung, pQCD and the parton structure of the nucleon, 2001, In *Shifman,

M. (ed.): At the frontier of particle physics, vol. 2* 887-971)

tions $F_a^{\lambda}(x, \frac{Q}{m}, \alpha_s(\mu))$ (a = all parton flavors). Although the underlying physical ideas are relatively simple, as emphasized in the last two sections, the mathematical proofs are technically very demanding.^{7,15,19} For this reason, actual proofs of factorization only exist for a few hard processes; and certain proofs (e.g. that for the Drell-Yan process) stayed controversial for some time before a consensus were reached.¹⁵ Because of the general character of the physical ideas and the mathematical methods involved, however, it is generally assumed that the attractive quark-parton model does apply to all high energy interactions with at least one large energy scale.

$$\frac{d\sigma}{dy} = \sum_{a,b} \int_{x_A}^1 d\xi_A \int_{x_B}^1 d\xi_B f_A^a(\xi_A,\mu) f_B^b(\xi_B,\mu) \frac{d\hat{\sigma}_{ab}(\mu)}{dy} + \mathcal{O}\left(\left(\frac{m}{P}\right)^p\right)$$

- The problem with Drell-Yan: initial state interactions...
- factorization here does not hold graph-by-graph but only for all

Collinear factorization

 NOT covered by factorization theorem.... but contributions can be large ?!?

Warning on Factorization:

- The limits are factorization (i.e., the universality) of h h → h + X is not yet fully explored!
- You must surely sum over (i.e., not ask questions about) the soft stuff (as we do with jets)
- Some limits are becoming "clear" in h h → h h (b-to-b) + X See, e.g., J. Collins, hep-ph/0708.4410
- The INTRO discussion in G. Sterman, hep-ph/0807.5118
- The application of SCET (Soft Collinear Effective Theory) C. W. Bauer, et al., <u>hep-ph/0808.2191</u>
- See also, M. Seymour, et al., hep-ph/0808.1269

But even this is not the full story...

• factorization breaking in $pp
ightarrow j_1 j_2 X$

FIG. 8 (color online). The exchange of two extra gluons, as in this graph, will tend to give nonfactorization in unpolarized cross sections.

J. Collins, J.W. Qiu hep-ph 0705.2141

Collinear factorization schemes

- DIS scheme: absorbing all finite contributions C_q into quark densities, with no finite $\mathcal{O}(\alpha_s)$ corrections: $F_2^{DIS}(x,Q^2) = x \sum e_q^2 q(x,Q^2)$
- MS scheme, where only minimal contributions from the finite parts are absorbed in the quark distributions:

$$F_2^{\overline{MS}}(x,Q^2) = x \sum e_q^2 \int \frac{dx_2}{x_2} q^{\overline{MS}}(x,Q^2) \left[\delta \left(1 - \frac{x}{x_2} \right) + \frac{\alpha_s}{2\pi} C^{\overline{MS}} \left(\frac{x}{x_2} \right) + \dots \right]$$

- once the scheme is chosen, it MUST be used in all other cross section calculations
- higher order corrections will of course depend on the chosen scheme...
- BUT.... there are still other contributions to be included... gluon induced processes

PDFs in different fact. schemes

- differences between LO and NLO DIS, MS scheme in quark and gluon densities
- can make significant effects for x-sections

But back to the evolution equation

Evolution kernels - splitting fcts

Splitting functions have perturbative expansion in the running coupling:

$$P(z, \alpha_s) = P^{(0)}(z) + \frac{\alpha_s}{2\pi} P^{(1)}(z) + \dots$$

including more and more loops

Splitting functions at higher orders

S. Moch, HERA-LHC workshop, June 2004

$$P(z, \alpha_s) = P^{(0)}(z) + \frac{\alpha_s}{2\pi} P^{(1)}(z) + \dots$$

The calculation (in a nut shell)

- Calculate anomalous dimensions (Mellin moments of splitting functions)
 - \longrightarrow divergence of Feynman diagrams in dimensional regularization $D = 4 2\epsilon$

Splitting functions (cont'd)

S. Moch, HERA-LHC workshop, June 2004

LO and NLO singlet splitting functions $P(z, \alpha_s) = P^{(0)}(z) + \frac{\alpha_s}{2\pi}P^{(1)}(z) + ...$

$$P_{ps}^{(0)}(x) = 0$$

$$P_{qg}^{(0)}(x) = 2n_f p_{qg}(x)$$

$$P_{gq}^{(0)}(x) = 2C_F p_{gq}(x)$$

$$P_{gg}^{(0)}(x) = C_A \left(4p_{gg}(x) + \frac{11}{3}\delta(1-x)\right) - \frac{2}{3}n_f \delta(1-x)$$

$$\begin{split} P^{(1)}_{\text{ps}}(x) &= 4 C_F n_f \Big(\frac{20}{9} \frac{1}{x} - 2 + 6x - 4\text{H}_0 + x^2 \Big[\frac{8}{3} \text{H}_0 - \frac{56}{9} \Big] + (1+x) \Big[5\text{H}_0 - 2\text{H}_{0,0} \Big] \Big) \\ P^{(1)}_{\text{lg}}(x) &= 4 C_A n_f \Big(\frac{20}{9} \frac{1}{x} - 2 + 25x - 2 \rho_{\text{qg}}(-x) \text{H}_{-1,0} - 2 \rho_{\text{lgg}}(x) \text{H}_{1,1} + x^2 \Big[\frac{44}{3} \text{H}_0 - \frac{218}{9} \Big] \\ &+ 4(1-x) \Big[\text{H}_{0,0} - 2\text{H}_0 + x\text{H}_1 \Big] - 4\zeta_2 x - 6\text{H}_{0,0} + 9\text{H}_0 \Big) + 4 C_F n_f \Big(2 \rho_{\text{qg}}(x) \Big[\text{H}_{1,0} + \text{H}_{1,1} + \text{H}_2 \\ &- \zeta_2 \Big] + 4x^2 \Big[\text{H}_0 + \text{H}_{0,0} + \frac{5}{2} \Big] + 2(1-x) \Big[\text{H}_0 + \text{H}_{0,0} - 2x\text{H}_1 + \frac{29}{4} \Big] - \frac{15}{2} - \text{H}_{0,0} - \frac{1}{2} \text{H}_0 \Big) \\ P^{(1)}_{\text{gq}}(x) &= 4 C_A C_F \Big(\frac{1}{x} + 2 \rho_{\text{gq}}(x) \Big[\text{H}_{1,0} + \text{H}_{1,1} + \text{H}_2 - \frac{11}{6} \text{H}_1 \Big] - x^2 \Big[\frac{8}{3} \text{H}_0 - \frac{44}{9} \Big] + 4\zeta_2 - 2 \\ &- 7\text{H}_0 + 2\text{H}_{0,0} - 2\text{H}_1 x + (1+x) \Big[2\text{H}_{0,0} - 5\text{H}_0 + \frac{37}{9} \Big] - 2 \rho_{\text{gq}}(-x)\text{H}_{-1,0} \Big) - 4 C_F n_f \Big(\frac{2}{3} x \\ &- \rho_{\text{gq}}(x) \Big[\frac{2}{3} \text{H}_1 - \frac{10}{9} \Big] \Big) + 4 C_F^2 \Big(\rho_{\text{gq}}(x) \Big[3\text{H}_1 - 2\text{H}_{1,1} \Big] + (1+x) \Big[\text{H}_{0,0} - \frac{7}{2} + \frac{7}{2} \text{H}_0 \Big] - 3\text{H}_{0,0} \\ &+ 1 - \frac{3}{2} \text{H}_0 + 2\text{H}_1 x \Big) \\ P^{(1)}_{\text{gg}}(x) &= 4 C_A n_f \Big(1 - x - \frac{10}{9} \rho_{\text{gg}}(x) - \frac{13}{9} \Big(\frac{1}{x} - x^2 \Big) - \frac{2}{3} (1+x) \text{H}_0 - \frac{2}{3} \delta(1-x) \Big) + 4 C_A^2 \Big(27 (1+x) \text{H}_1 + 1 - \frac{2}{3} \text{H}_0 + 2\text{H}_1 x \Big) \\ P^{(1)}_{\text{gg}}(x) &= 4 C_A n_f \Big(1 - x - \frac{10}{9} \rho_{\text{gg}}(x) - \frac{13}{9} \Big(\frac{1}{x} - x^2 \Big) - \frac{2}{3} (1+x) \text{H}_0 - \frac{2}{3} \delta(1-x) \Big) + 4 C_A^2 \Big(27 (1+x) \text{H}_1 + \frac{2}{3} \text{H}_0 + 2\text{H}_1 x \Big) \\ P^{(1)}_{\text{gg}}(x) &= 4 C_A n_f \Big(1 - x - \frac{10}{9} \rho_{\text{gg}}(x) - \frac{13}{9} \Big(\frac{1}{x} - x^2 \Big) - \frac{2}{3} (1+x) \text{H}_0 - \frac{2}{3} \delta(1-x) \Big) + 4 C_A^2 \Big(27 (1+x) + \frac{2}{3} x^2 \text{H}_0 + 2\rho_{\text{gg}}(x) \Big(\frac{1}{18} - \zeta_2 + \text{H}_{0,0} + 2\text{H}_{1,0} + 2\text{H}_2 \Big) + \delta(1-x) \Big[\frac{8}{3} + 3\zeta_3 \Big] \Big) + 4 C_F n_f \Big(2\text{H}_0 + \frac{2}{3} x \Big) \\ - \frac{44}{3} x^2 \text{H}_0 + 2\rho_{\text{gg}}(x) \Big[\frac{67}{18} - \zeta_2 + \text{H}_{0,0} + 2\text{H}_{1,0} + 2\text{H}_2 \Big] + \delta(1-x) \Big[\frac{8}{3} + 3\zeta_3 \Big] \Big) + 4 C_F n_f \Big(2\text{H}_0 + \frac{2}{3}$$

Splitting functions (cont'd)

 $P(z, \alpha_s) = P^{(0)}(z) + rac{lpha_s}{2\pi} P^{(1)}(z) + \left(rac{lpha_s}{2\pi}
ight)^2 P^{(2)}(z) + \dots^{\text{S. Moch, HERA-LHC workshop, June 2004}}$

NNLO singlet splitting functions

$$\begin{split} & g_{1}^{(2)}(g) = 116 \zeta_{1}^{(2)}(g_{1}^{(2)} + g_{2}^{(2)}(\frac{1}{2})^{-1}(g_{2}^{(2)} + g_{2}^{(2)} + \frac{1}{2})^{-1}(g_{2}^{(2)} + g_{2}^{(2)} + g_{2}^{$$

$$\begin{split} A_{1}^{(2)}(s) &= 16G_{1}G_{2}(s) \left(\frac{2}{3} \ln(s) - \frac{11}{3} \ln(s) + 16\pi s + \frac{11}{3} \ln(s) + \frac{1}{3} \ln(s) +$$

$$\begin{split} & = & \lim_{k \to +\infty} \left| \frac{1}{k_k} \left| \frac{1}{k_k} - \frac{1}{k_k} \left| \frac{1}{k_k} - \frac{1}{k_k} \right| \frac{1}{k_k} - \frac{1}{k_k} - \frac{1}{k_k} \left| \frac{1}{k_k} - \frac{1}{k_k} \right| \frac{1}{k_k} - \frac$$

 $\begin{array}{l} 33.25 + 102 + 112 + \frac{11}{2} + 102 + \frac{11}{2} +$

$$\begin{split} & -H_{0,0,0} + \frac{2}{3}(1,y_0 - \frac{2}{3}(1,y$$

$$\begin{split} & f_{2}^{(2)}(q) = 16\xi_{1}^{(2)}(q) \left(\frac{1}{2}^{(2)} \frac{1}{2} h_{1}^{(2)} - \frac{13}{2} h_{2}^{(2)} + 2g_{1}^{(2)}(1-2)h_{1}^{$$

$$\begin{split} & \frac{1}{2} \log_{2} - \frac{1}{2}$$

$$\begin{split} + \frac{1}{2} \lambda_{00}(t) \| \lambda_{00} - \| \lambda_{00} - \| \lambda_{00}^{-1} + \| \lambda_{00}^{-1} - \frac{11}{2} \lambda_{00}^{-1} + \frac{11}{2} \lambda_{0$$

$$\begin{split} & \frac{d\bar{h}^2}{d\bar{h}}(\bar{h}) = 1.6G_{1}G_{2}\left(\bar{h}^2 \left[\frac{1}{2} \ln 1 - \frac{2\pi i}{2} \ln \frac{1}{2} + \frac{1}{2} \ln \frac{1}{2} + \frac{1}{2} \ln \frac{1}{2} + \frac{1}{2} + \frac{1}{2} \ln \frac{1}{2} \ln \frac{1}{2} + \frac{1}{2} \ln \frac{1}{2} \ln \frac{1}{2} \ln \frac{1}{2} + \frac{1}{2} \ln \frac$$

$$\begin{split} & = 135_{0,00} + \frac{310}{20} + \frac{11}{2} 44_{00} - \frac{1}{2} 44_{00} + \frac{110}{2} + \frac{110}{$$

 $\begin{array}{l} \displaystyle \frac{42}{32} b_{1} - \frac{12}{14} b_{1} + \frac{7}{12} b_{1} b_{2} + \frac{12}{14} b_{2} + \frac{12}{14} b_{1} - \frac{22}{14} b_{1} - \frac{22}{14} b_{2} - \frac{12}{14} b_{2}$

NLO contributions to $F_2(x, Q^2)$

Evolution kernels - splitting fcts

- some of the splitting functions are also divergent...
- use plus-distribution to avoid dangerous region:

$$\int_0^1 dz \frac{f(z)}{(1-z)_+} = \int_0^1 dz \frac{f(z) - f(1)}{1-z}$$

- divergence cancelled by virtual corrections ...
- use splitting functions with plus-distribution

 $\frac{1}{1-z}$

virtual contributions, again ...

- we should have: $P(z) o P(z) + K\delta(1-z)$
- conservation of quark (baryon) number:

$$\mathcal{P}_{qq}(z,Q^2) = \delta(1-z) + \frac{\alpha_s}{2\pi}\hat{P}_{qq}^+ \log \frac{Q^2}{\mu^2} + \dots$$

$$\int_0^1 \mathcal{P}_{qq}(z,Q^2) dz = 1$$

$$\int_0^1 \frac{dz}{z} P_{qq}(z) = 0$$

Blackboard

changed splitting function:

$$P_{qq} = \frac{1+z^2}{(1-z)_+} + \frac{3}{2}\delta(1-z)$$

How to apply these results

Applying DGLAP to DIS data ...

Extraction of PDFs from DGLAP fits

Meaning of evolution equations

- order emissions by "size"
- limits on the included emissions are provided by the scales (Q²) for the short distance and X for the long distance
- next separate contributions above and below factorization scale μ
- factor scales χ to μ into renormalized parton distributions.
 All above μ can be calculated perturbatively
 H. Jung, QCD and MCs II, DESY - HH, 17 July 2009

Solving DGLAP equations ...

- Different methods to solve integro-differential equations
 - brute-force (BF) method (M. Miyama, S. Kumano CPC 94 (1996) 185)

$$\frac{df(x)}{dx} = \frac{f(x)_{m+1} - f(x)_m}{\Delta x_m}$$

$$\int f(x)dx = \sum f(x)_m \Delta x_m$$

- Laguerre method (S. Kumano J.T. Londergan CPC 69 (1992) 373, and L. Schoeffel Nucl.Instrum.Meth.A423:439-445,1999)
- Mellin transforms (M. Glueck, E. Reya, A. Vogt Z. Phys. C48 (1990) 471)
- QCDNUM: calculation in a grid in x,Q2 space (M. Botje Eur.Phys.J. C14 (2000) 285-297)
- CTEQ evolution program in x,Q2 space: http://www.phys.psu.edu/~cteq/
- QCDFIT program in X, Q2 space (C. Pascaud, F. Zomer, LAL preprint LAL/94-02, H1-09/94-404, H1-09/94-376)
- MC method using Markov chains (S. Jadach, M. Skrzypek hep-ph/0504205)
- Monte Carlo method from iterative procedure
- brute-force method and MC method are best suited for detailed studies of branching processes !!!

Comparison of different methods

Compare Laguerre and Mellin method with brute-force (BF) method

Evolution code in LHAPDF

C C LHAPDF :: HepForge								\square
	http://proje	cts.hepforge.org/lhapdf/			☆ ▼)•	(G* f	actorization breaking	٩
Most Visited - H1 Fast	Navigator DESY CMS Homepage	phone book HERA LH	C workshop HERA	Monte Carlo P	HERA - LHC worksh	eds07	Physics form at de.a	>>
LHAPDF	Gol						hosted by CEDAR	HepForge

LHAPDF the Les Houches Accord PDF Interface

Home

- LHAPDF Home
- Publications
- Installation
- PDF sets
- Downloads
- User manual
- Theory review
- C++ wrapper (v5.4)
- C++ wrapper (old v5.3))
- Python wrapper (v5.4)
- .LHpdf files
- .LHgrid files
- Mailing list
- ChangeLog
- Subversion repo
- Contact

LHAPDF provides a unified and easy to use interface to modern PDF sets. It is designed to work not only with individual PDF sets but also with the more recent multiple "error" sets. It can be viewed as the successor to PDFLIB, incorporating many of the older sets found in the latter, including pion and photon PDFs. In LHAPDF the computer code and input parameters/grids are separated thus allowing more easy updating and no limit to the expansion possibilities. The code and data sets can be downloaded together or inidivually as desired. From version 4.1 onwards a configuration script facilitates the installation of LHAPDF.

Contents:

Installing LHAPDF.

PDF set numbers

A wrapper for C++.

A little bit of theory.

PDFsets.index

Tracker/Wiki

ChangeLog.

On-line user manual.

List of all available PDF sets.

A wrapper for C++. (old version)

Description of the .LHpdf files

Description of the .LHarid files

View the Subversion repository.

Publications/LHAPDF reference

Name conflicts with CERNLIB

How to join the announcement mailing list.

How to email the developers of LHAPDF

Patches: patches to 5.7.0

Downloads:

Latest released version (16/02/2009): 5.7.0 (full): Ihapdf-5.7.0.tar.gz 5.7.0 (nopdf): lhapdf-5.7.0-nopdf.tar.gz Extra PDF sets Old versions: 5.6.0 (full): lhapdf-5.6.0.tar.gz 5.5.1 (full): lhapdf-5.5.1.tar.gz 5.5.0 (full): lhapdf-5.5.0.tar.gz 5.4.1 (full): lhapdf-5.4.1.tar.gz 5.4.0 (full): Ihapdf-5.4.0.tar.gz 5.3.1 (full): lhapdf-5.3.1.tar.gz(patches) 5.3.0 (full): Ihapdf-5.3.0.tar.gz(patches) 5.2.3 (full): lhapdf-5.2.3.tar.gz 5.2.2 (full): lhapdf-5.2.2.tar.gz 5.2.1 (full): Ihapdf-5.2.1.tar.gz 5.2 (full): hapdf-5.2.tar.gz 5.1 (full): lhapdf-5.1.tar.gz

Can

• CTEQ, QCDNUM, and other evolution packages...

From evolution equation to parton branching ...

How?

Divergencies again...

- collinear divergencies factored into renormalized parton distributions $z \rightarrow 1$
- soft divergency treated with Sudakov form factor:

$$\Delta(t) = \exp\left[-\int_{t_0}^t \frac{dt'}{t'} \int^{z_{max}} dz \frac{\alpha_s}{2\pi} \tilde{P}(z)\right]$$

DGLAP evolution again....

• differential form:

$$t\frac{\partial}{\partial t}f(x,t) = \int \frac{dz}{z} \frac{\alpha_s}{2\pi} P_+(z) f\left(\frac{x}{z},t\right)$$

• differential form using f/Δ_s with

$$\Delta_s(t) = \exp\left(-\int_x^{z_{max}} dz \int_{t_0}^t \frac{\alpha_s}{2\pi} \frac{dt'}{t'} \tilde{P}(z)\right)$$

$$t\frac{\partial}{\partial t}\frac{f(x,t)}{\Delta_s(t)} = \int \frac{dz}{z}\frac{\alpha_s}{2\pi} \frac{\tilde{P}(z)}{\Delta_s(t)} f\left(\frac{x}{z},t\right)$$

• integral form

$$f(x,t) = f(x,t_0)\Delta_s(t) + \int \frac{dz}{z} \int \frac{dt'}{t'} \cdot \frac{\Delta_s(t)}{\Delta_s(t')} \tilde{P}(z) f\left(\frac{x}{z},t'\right)$$

no - branching probability from t_0 to t

Sudakov form factor: all loop resum...

$$g \rightarrow gg \qquad \text{Splitting Fct} \qquad \tilde{P}(z) = \frac{\bar{\alpha}_s}{1-z} + \frac{\bar{\alpha}_s}{z} + \dots$$
• Sudakov form factor all loop resummation
$$\Delta_{\mathbf{S}} = \exp\left(-\int dz \int \frac{dq'}{q'} \frac{\alpha_s}{2\pi} \tilde{P}(z)\right)$$

$$\Delta_{\mathbf{S}} = 1 + \left(-\int dz \int \frac{dq}{q} \frac{\alpha_s}{2\pi} \tilde{P}(z)\right)^1 + \frac{1}{2!} \left(-\int dz \int \frac{dq}{q} \frac{\alpha_s}{2\pi} \tilde{P}(z)\right)^2 \dots$$
+
$$\prod_{k \neq 0} \mathbf{F}(z) \left[1 - \int \int dz \frac{dq}{q} \frac{\alpha_s}{2\pi} \tilde{P}(z) + \frac{1}{2!} \left(-\int \int dz \frac{dq}{q} \frac{\alpha_s}{2\pi} \tilde{P}(z)\right)^2 - \dots - \right]$$

Sudakov form factor

- what is the limit on z- integration ?
 - resolvable branching ?

•
$$z < 1 - rac{Q_0^2}{Q_b^2}$$
 with Q_0 a soft cutoff **Blackboard**

• probability of no -radiation between Q_a and Q_b

•
$$\Pi(Q_a^2, Q_b^2) = \frac{\Delta(Q_a^2)}{\Delta(Q_b^2)}$$

= $\exp\left[-\int_{Q_b^2}^{Q_a^2} \frac{dq^2}{q^2} \int_0^{z_{cut}} dz \frac{\alpha_s}{2\pi} P(z)\right]$

Sudakov form factors

Figure 21. The Sudakov form factors for initial-state gluons at a hard scale of 100 GeV as a function of the transverse momentum of the emitted gluon. The form factors are for (top to bottom) parton x values of 0.3, 0.1, 0.03, 0.01, 0.001 and 0.0001.

Figure 23. The Sudakov form factors for initial-state quarks at a hard scale of 100 GeV as a function of the transverse momentum of the emitted gluon. The form factors are for (top to bottom) parton x values of 0.3, 0.1 and 0.03.

Figure 22. The Sudakov form factors for initial-state gluons at a hard scale of 500 GeV as a function of the transverse momentum of the emitted gluon. The form factors are for (top to bottom) parton x values of 0.3, 0.1, 0.03, 0.01, 0.001 and 0.0001.

Figure 24. The Sudakov form factors for initial-state quarks at a hard scale of 500 GeV as a function of the transverse momentum of the emitted gluon. The form factors are for (top to bottom) parton x values of 0.3, 0.1 and 0.03.

Solving integral equations

- Integral equation of Fredholm type: $\phi(x) = f(x) + \lambda \int^{b} K(x,y)\phi(y)dy$
- solve it by iteration (Neumann series):

$$\phi_{0}(x) = f(x)$$

$$\phi_{1}(x) = f(x) + \lambda \int_{a}^{b} K(x, y) f(y) dy$$

$$\phi_{2}(x) = f(x) + \lambda \int_{a}^{b} K(x, y_{1}) f(y_{1}) dy_{1} + \lambda^{2} \int_{a}^{b} \int_{a}^{b} K(x, y_{1}) K(y_{1}, y_{2}) f(y_{2}) dy_{2} dy_{1}$$

$$\phi_{n}(x) = \sum_{i=0}^{n} \lambda^{i} u_{i}(x)$$

$$u_{0}(x) = f(x)$$

$$u_{1}(x) = \int_{a}^{b} K(x, y) f(y) dy$$

$$u_{n}(x) = \int_{a}^{b} \int_{a}^{b} K(x, y_{1}) K(y_{1}, y_{2}) \cdots K(y_{n-1}, y_{n}) f(y_{n}) dy_{2} \cdots dy_{n}$$

with the solution: $\phi(x) = \lim_{n \to \infty} q_n(x) = \lim_{n \to \infty} \sum_{i=0}^{\infty} \lambda^i u_i(x)$

DGLAP re-sums leading logs...

$$f(x,t) = f(x,t_0)\Delta_s(t) + \int \frac{dz}{z} \int \frac{dt'}{t'} \cdot \frac{\Delta_s(t)}{\Delta_s(t')} \tilde{P}(z) f\left(\frac{x}{z},t'\right)$$

solve integral equation via iteration:

$$f_{0}(x,t) = f(x,t_{0})\Delta(t)$$
from t' to t
w/o branching
branching at t'
from t_{0} to t'
w/o branching
$$f_{1}(x,t) = f(x,t_{0})\Delta(t) + \int_{t_{0}}^{t} \frac{dt'}{t'} \frac{\Delta(t)}{\Delta(t')} \int \frac{dz}{z} \tilde{P}(z) f(x/z,t_{0})\Delta(t')$$

$$x t$$

$$z = x/x_{0} t'$$
P(z)

DGLAP re-sums leading logs...

$$f(x,t) = f(x,t_0)\Delta_s(t) + \int \frac{dz}{z} \int \frac{dt'}{t'} \cdot \frac{\Delta_s(t)}{\Delta_s(t')} \tilde{P}(z) f\left(\frac{x}{z},t'\right)$$

solve integral equation via iteration:

$$\begin{aligned} f_0(x,t) &= f(x,t_0)\Delta(t) & \text{from } t' \text{ to } t \\ \text{w/o branching} & \text{branching at } t' & \text{from } t_0 \text{ to } t' \\ \text{w/o branching} \end{aligned} \\ f_1(x,t) &= f(x,t_0)\Delta(t) + \int_{t_0}^t \frac{dt'}{t'} \frac{\Delta(t)}{\Delta(t')} \int \frac{dz}{z} \tilde{P}(z) f(x/z,t_0) \Delta(t') \\ &= f(x,t_0)\Delta(t) + \log \frac{t}{t_0} A \otimes \Delta(t) f(x/z,t_0) \\ f_2(x,t) &= f(x,t_0)\Delta(t) + \log \frac{t}{t_0} A \otimes \Delta(t) f(x/z,t_0) + \\ &\quad \frac{1}{2} \log^2 \frac{t}{t_0} A \otimes A \otimes \Delta(t) f(x/z,t_0) \\ f(x,t) &= \lim_{n \to \infty} f_n(x,t) = \lim_{n \to \infty} \sum_n \frac{1}{n!} \log^n \left(\frac{t}{t_0}\right) A^n \otimes \Delta(t) f(x/z,t_0) \end{aligned}$$

DGLAP evolution equation... again...

- for fixed x and Q^2 chains with different branchings contribute
- iterative procedure, spacelike parton showering

What is happening at small x ?

• For $x \to 0$ only gluon splitting function matters:

$$P_{gg} = 6\left(\frac{1-z}{z} + \frac{z}{1-z} + z(1-z)\right) = 6\left(\frac{1}{z} - 2 + z(1-z) + \frac{1}{1-z}\right)$$

$$P_{gg} \sim 6\frac{1}{z} \text{ for } z \to 0$$

$$\frac{dg(x,\mu^2)}{d\log\mu^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} g(\xi,\mu^2) P_{gg}\left(\frac{x}{\xi}\right)$$
Blackboard

• evolution equation is then: $\frac{dg(x,\mu^2)}{d\log\mu^2} = \frac{\alpha_s}{2\pi} \int_x^1 \frac{d\xi}{\xi} g(\xi,\mu^2) P_{gg}\left(\frac{x}{\xi}\right)$ $xg(x,t) = \frac{3\alpha_s}{\pi} \int_{t_0}^t d\log t' \int_x^1 \frac{d\xi}{\xi} \xi g(\xi,t') \quad \text{with} \quad t = \mu^2$

Estimates at small x: DLL

$$\begin{aligned} xg(x,t) &= \frac{3\alpha_s}{\pi} \int_{t_0}^t d\log t' \int_x^1 \frac{d\xi}{\xi} \xi g(\xi,t') & \text{with} \quad t = \mu^2 \end{aligned}$$

$$\begin{aligned} &\text{use constant starting distribution at small } t; \quad xg_0(x) = C \\ &xg_1(x,t) &= \frac{3\alpha_s}{\pi} \log \frac{t}{t_0} \log \frac{1}{x}C & \xrightarrow{1-\operatorname{rung} \frac{t}{y}} \\ &xg_2(x,t) &= \left(\frac{3\alpha_s}{\pi} \frac{1}{2} \log \frac{t}{t_0} \frac{1}{2} \log \frac{1}{x}\right)^2 C & \xrightarrow{2\operatorname{rung} \frac{t}{y}} \\ &\vdots \\ &xg_n(x,t) &= \frac{1}{n!} \frac{1}{n!} \left(\frac{3\alpha_s}{\pi} \log \frac{t}{t_0} \log \frac{1}{x}\right)^n C & \xrightarrow{3\operatorname{rung} \frac{t}{y}} \\ &xg(x,t) &= \sum_n \frac{1}{n!} \frac{1}{n!} \left(\frac{3\alpha_s}{\pi} \log \frac{t}{t_0} \log \frac{1}{x}\right)^n C & \xrightarrow{4\operatorname{rung} \frac{t}{y}} \\ &xg(x,t) &\sim C \exp\left(2\sqrt{\frac{3\alpha_s}{\pi} \log \frac{t}{t_0} \log \frac{1}{x}}\right) & \text{double leading log approximation (DLL)} \end{aligned}$$

Results from DLL approximation

- DLL arise from taking small x limit of splitting fct:
 - $\log 1/x$ from small x limit of splitting fct
 - $\log t/t_0$ from *t* integration
 - strong ordering in x from small x limit
 - strong ordering in t from small t limit of ME...
- DLL gives rapid increase of gluon density from a flat starting distribution
- gluons are coupled to F_2 ... strong rise of

- •consequences:
- rise continues forever ???
- what happens when too high gluon density ?

Remember the pre-HERA times

