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Outline

• Preliminaries: motivation and the continuum theory 

• Lattice formulation and the MPS 

• Numerical results for the phase structure 

• Conclusion and outlook



Preliminaries



The standard strategy

Hamiltonian (operator) formalism for QFT

Quantum spin model

Obtaining the ground state via MPS techniques

Compute correlators and excited state spectrum



Motivation

• New formulation for lattice field theory 

• No sign problem 

• Real-time dynamics in quantum field theories 

• Quantum computation for QFT’s.

In this talk: Kosterlitz-Thouless phase transition



The 1+1 dimensional Thirring model  
and its duality to the sine-Gordon model
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I. INTRODUCTION

STh

[

ψ, ψ̄
]

=

∫

d2x
[

ψ̄iγµ∂µψ −m0ψ̄ψ −

g

2

(

ψ̄γµψ
)2
]

(1)
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strong-weak duality
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G(|a− b|) = ⟨ei(θ(a)−θ(b))⟩ (16)

G(r) = A r−T/2πK . (17)
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=
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cos (θi − θj) (4)

〈

n
∏

i=1

eiκiφ(x)

〉

ren.

=
∏

i<j

(µ |xi − xj |)
κiκj/2π , where

[

eiκiφ(x)
]

bare
= (Λ/µ)−κ2

i /4π
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eiκiφ(x)
]

ren.
(5)

And similar power law for ψ̄ψ correlators.

The K-T phase transition at T ∼ Kπ/2 in the XY model.

The phase boundary at t ∼ 8π separates the phases where the cosine term becomes relevant or irrelevant.
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Quantities Thirring sine-Gordon XY

vector current  ̄�
µ

 
1

2⇡
✏
µ⌫

@
⌫

�

chiral condensate  ̄ 
⇤

⇡
cos�

Table 2: Correspondence between the massive Thirring model, sine-Gordon
model and the classical XY model.

4 Tensor Network methods

4.1 Singular Value Decomposition (SVD)

4.2 Matrix Product States (MPS)

4.3 Matrix Product Operators (MPO)

4.4 Density Matrix Renormalization Group (DMRG)

5 Preliminaries on the lattice calculation

In this section we will carefully investigate the lattice version of the Hamiltonian,
and the other physical quantities. We will first examine the discretization, and
then write down those quantities in the spin language by the Jordan-Wigner
transformation.

5.1 Staggered fermions in the Hamiltonian formalism

Let’s first consider the staggered fermion in the Hamiltonian formalism. The
di↵erence between the Hamiltonian and action is that the spin diagonalization
must be done in the di↵erent way. This is basically because of the additional
�
0

appeared in the Hamiltonian formalism, while in action �
0

was absorbed as
the part of  ̄.

Let’s look into an example of the free Dirac fermion in two dimensions

S[ ,  ̄] =

Z

d2x
⇥

 ̄i�µ@
µ

 �m
0

 ̄ 
⇤

. (27)

We first compute the conjugate momentum

⇧ =
�L

�(@
0

 )
=  ̄i�0 = i + . (28)

Therefore, the Hamiltonian reads to

H =

Z

dx (⇧@
0

 � L )

=

Z

dx
⇥

�i +�0�1@
1

 +m
0

 +�0 
⇤

.

(29)
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Thirring sine-Gordon XY

g
4π

2

t
− π

T

K
− π

vσlal−1al

Mσlal−1,al

G(|a− b|) = ⟨ei(θ(a)−θ(b))⟩ (16)

G(r) = A r−T/2πK . (17)

G(r) = A′ e−r/ξ. (18)

Tc ∼ Kπ/2. (19)

g

T

gc ∼ −π/2. (20)

g ↔ κ

Epair ∼ log (|r1 − r2|/a)

Sr =

(

cosθr
sinθr

)

(21)
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RG flows of the Thirring model
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Employing Eq. (7), these β−functions can be rewritten in T and z, leading to

βT ≡ µ
dT

dµ
= −64π

z2

Λ4
,

βz ≡ µ
dz

dµ
=

1− 8πT

4πT
z −

64π

T 2Λ4
z3. (9)

These can be used to obtain the scaling behaviour of the Thirring model,

βg ≡ µ
dg

dµ
= −64π

m2

Λ2
,

βm ≡ µ
dm

dµ
=

−2(g + π
2 )

g + π
m−

256π3

(g + π)2Λ2
m3. (10)

III. DISCUSSION

From Eq. (10), it is clear that the value g = −π/2 plays a crucial role1. When g < −π/2, the RG evolution drives the
renormalised m to zero at low energy. This means m/Λ → 0, and then βg = 0. On the other hand, when g > −π/2,
the renormalised m exhibits the opposite behaviour, and will grow when the theory flows towards the IR limit. This
results in βg = 0, i.e., asymptotic freedom.
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1 As mentioned earlier in this note, g > −π is always required because of unitarity.

Massless Thirring model is a conformal field theory 
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Reminder: Kosterlitz equations



Lattice simulations and the MPS



Operator formalism and the Hamiltonian
• Operator formaliam of the Thirring model Hamiltonian  
 
 

• Staggering, J-W transformation (                      ):

projected to a sector of total spin

JW-trans of the total fermion number, 
Bosonise to topological index in the SG theory. 
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��h ¯  i

��
=

1

N

�����
X

n

(�1)

nSz
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XXZ

= ⌫(g)


�1

2

N�2X

n

�
S+
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S�
n+1 + S+

n+1S
�
n

�
+am̃0

N�1X

n

(�1)

n

✓
Sz

n

+

1

2

◆
+�(g)

N�1X

n

✓
Sz

n
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1

2
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Sz

n+1 +
1

2

◆�
, (24)
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But even if such a simplification does not occur, it turns out that MPOs with quite small dimensions
and moderate loss of accuracy can be found, either by approximating an arbitrary interaction function
JðrÞ by a sum of exponentials coded as above [71,100], minimizing the L2 distance kJðrÞ #
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r
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ai; ki, where n is given by the DW and loss of accuracy one is willing to consider. Alternatively [73], one
can of course construct the exact MPO where feasible and compress it by adapting MPS compression
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All the beauty of the MPO formulation seems gone, but a graphical representation restores it (Fig. 38).
It can be understood most easily from the second or third line of the explicit expressions above: the

a -1

σ

σ ´

a ´a -1´

a

L

L

W R

Fig. 38. Representation of the DMRG expression ha‘#1r‘a‘ jbHja0‘#1r0‘a0‘i in MPO/MPS language. The Hamiltonian MPO is
contracted with four block state expansions in MPS form (two bras, two kets, two on block A, two on block B). The contracted
network decouples into parts L;W and R, corresponding to blocks A and B and the center site.
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where the magnitude of � should be chosen large enough to ensure that all the states with have energy above the
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B. Simulation details

describe the simulations in details: choice of parameters (� and a⇥m0, as well as L/a and D). say that
this will allow us to investigate things such as the intinite-D and infinite-L/a limits. and then describe
how we prepare the initial tensors —- no infinite DMRG step, and we start from random values for
the components of the tensors.

In this work, the DMRG runs begin with a randomly-initialized MPS with D = 50. For higher Ds, the initial MPS
is prepared by growing the bond dimension of the previous runs. This can be accomplished by inserting a non-square
identity to each bond of the MPS. We gradually grow the bond dimension until it reaches 600. With several di↵erent
D’s, one can investigate the error of finite D systematically, and extrapolate the physical quantities to the infinite-D
limit. Similarly, we study the finite-size e↵ect with 4 system sizes, N = 400, 600, 800, 1000. The coupling �(g) is
chosen from the range �0.8  �  1.0, with 5 di↵erent masses, m̃0a = 0.0, 0.1, 0.2, 0.3, 0.4. We set � to be 100, and
target at the zero-charge sector by setting S

target

= 0.

In performing the search of the ground state using the DMRG method, we observe that the convergence of the
algorithm is slower in a region of parameter space than that in the rest. This shows that there may be a regime where
the theory becomes critical. Figure 1 shows examples of these fast- and slow-convergence cases. For the slow cases,
not only it takes more swepps for DMRG to converge, the the Jacobi-Davidson solver for obtaining the low eigen
modes of the Hamiltonian is also significantly more time-consuming.

IV. RESULTS FOR THE PHASE STRUCTURE

In this section, we present results that can be employed to probe the non-thermal phase structure of the Thirring
model. As discussed in the Introduction, the dual sine-Gordon model contains a phase where the dynammics is
described by free bosnic field theory with the presence of conformal symmetry, and the relevant phase transition is of
KT-type. We will show, using our numerical results, that this phase transition is realised in the Thirring model.
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Convergence of DMRG

8

FIG. 1. Fast (left) and slow (right) converenge of the DMRG algorithm in our simulations.

In the following, we demonstrate the calculations for the entanglement entropty, the fermion correlator, and the
fermion bilinear condensate. From our results of these four objects, we obtain knowledge of the phase structure that
is summarised in Sec. IVD.

we should say how we estimate the errors here. or say it somewhere else, eg, Sec. III.

A. Entanglement entropy

We compute the finite-size entanglement entropy for a finite system of size N , with the generic definition in Eq. (23).
In particular, this finite-size entanglement entropy, S

N

(n), is obtained through

S
N

(n) = �
D

X

i=1

⇣

�
(0,n)
i

⌘2
ln



⇣

�
(0,n)
i

⌘2
�

, where n = 0, 1, 2, . . . , N � 1, (28)

with D being the bond dimension, and {�(0,n)
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} denoting the set of singular values obtained by patitioning the N -site
one-dimensional system in two parts of sizes n and N � n, respectively. This entanglement entropy is a useful tool to
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where c is the central charge, and k is a constant.

Figure 2 shows examples of the S
N

(n) from our analysis. For simulations performed at m̃0a = 0, it is observed
that the Calabrese-Cardy scaling in Eq. (29) is valid for the resultant S

N

(n) at all values of explored �(g). On the
contrary, at m̃0a 6= 0, then say what we learned from this, and don’t forget to say that the central charge
is 1 in the conformal phase, and in the gapped phase the entanglement entropy is small.

B. Fermion correlator

discuss how this correlator is related to the soliton correlator in the sine-Gordon model.
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FIG. 2. First row: entanglement entropy for m̃0a = 0.0, at �(g) = �0.88 (left) and �(g) = 0.0 (right). Second row:
entanglement entropy for m̃0a = 0.2, at �(g) = �0.88 (left) and �(g) = 0.0 (right).

C. Fermion bilinear condensate

The fermion bilinear condensate,

� = �̂/a = h ̄ i, (30)

serves as a good probe to the phase structure.

comment on the fact that the D dependence is negligible. and then says Fig. 5 shows the infinite-
size extrapolation which is an important issue in computing the condensate. we observe that the N
dependence is also very mild.

also, we want to say that the non-zero � at m̃0 ! 0 does not mean that chiral symmetry is broken
(cite Witten). See Figs. 6 and 8. Discuss this with relation to RG:  ̄ is dual to cos� in sine-Gordon
theory, and the extrapolation to the m̃0a ! 0 is to raise the cut-o↵ scale to infinity as compared to low
energy scales. This signals that cos� is relevant in one phase, and irrelevant in the other phase. As
Witten pointed out, the non-vanishing � is a signal of the BKT phase transition.
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In the following, we demonstrate the calculations for the entanglement entropty, the fermion correlator, and the
fermion bilinear condensate. From our results of these four objects, we obtain knowledge of the phase structure that
is summarised in Sec. IVD.

we should say how we estimate the errors here. or say it somewhere else, eg, Sec. III.
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where c is the central charge, and k is a constant.

Figure 2 shows examples of the S
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(n) from our analysis. For simulations performed at m̃0a = 0, it is observed
that the Calabrese-Cardy scaling in Eq. (29) is valid for the resultant S

N

(n) at all values of explored �(g). On the
contrary, at m̃0a 6= 0, then say what we learned from this, and don’t forget to say that the central charge
is 1 in the conformal phase, and in the gapped phase the entanglement entropy is small.

B. Fermion correlator

discuss how this correlator is related to the soliton correlator in the sine-Gordon model.
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5 Soliton correlator

It is well known that the BKT correlator of the classical XY model can be
written in the sine-Gordon language as [12],

hei(✓(a)�✓(b))i = he�
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t

R
�
a,b

dx

µ

✏

µ⌫

( @

@x

⌫

�)(x)i . (32)

To reformulate this expression in terms of the Thirring model, we may replace
the right-hand side of eq.(32) by using Coleman’s duality,

jµ(x) = � �

2⇡
✏µ⌫@

⌫

�(x) . (33)

However, the conserved current in the Thirring model is defined by

j1(x) = lim
y!x

1

1 + g

⇡

|cµ(x� y)|
g

2

2⇡(g+⇡)  ̄(x)�1 (y) + F (x� y) , (34)

and it is probably quite di�cult to take the limiting procedure on lattice. There-
fore, we pick up an indirect way and measure the fermion correlator which also
contains eq. (32),

 †
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↵
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(35)
where the fermion field  

↵

is written in the chiral representation.

5.1 Fermion correlator

Firstly, we should rewrite the fermion correlator from the chiral representation
into the standard representation we adopted. Observing that,

 †
↵

(x) 
↵

(y) =
1

2
 †(x)(1± �5)

1

2
(1± �5) (y) =

1

2
 †(x)(1± �5) (y) . (36)

We find, for example,
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L

(x) 
L

(y) =
1

2
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(y)] .

(37)
The above four terms can all be written in the spin language as a string corre-
lator,

S+
m

ei⇡
P

n�1
j=m+1 S

z

j S�
n

. (38)

Therefore, we can just look into the string correlator to see the overall behavior
of the fermion correlator. In addition, the string between S+ and S� would
give an alternating imaginary phase. Thus, we would only look at the distance
with even number of sites between them.
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Soliton operators

Power-law in the critical phase
Exponential-law in the gapped phaseJordan-Wigner transformation 

connecting vortex and anti-vortex

Vertex operators

S. Mandelstam, 1975; E. Witten, 1978

Power-law at criticality
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Ḡ

m̃0a = 0.0, D = 600

�(g) =-0.86

�(g) =-0.78

�(g) =-0.74

�(g) =-0.72

�(g) =-0.68

�(g) =-0.62

0 1 2 3 4 5

ln (r/a)

�10

�8

�6

�4

�2

0

ln
Ḡ
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Also, Fig. 7 shows examples of the m̃0 ! 0 extrapolation of the fermion bilinear condensate, in the
critical and the gapped phases.

D. Discussion

summarise what we learn about the phase structure from this study
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FIG. 5. Extrapolation to the N ! 1 limit for the fermion bilinear condensate at [�(g), m̃0a] = [�0.2, 0.0] (left) and
[�(g), m̃0a] = [0.2, 0.2] (right).
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FIG. 6. Fermion bilinear condensate in the limit where the bond dimension and the system size are infinite. In this plot, values
of the bare mass, m̃0a, are those used in the simulations.

V. CONCLUSION AND OUTLOOK

state what we have done, what we have learned. and say the method works well in probing the phase
structure of this theory —- the particlar point is that there is a critical phase and we showed that the
DMRG method could converge in this phase. plus, D = 600 seems ok.

then say very briefly about what we will do: chemical potential, real-time dynamics?
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Curvature at small mass in the gapped phase

Extrapolated to infinite D and N

chiral symmetry is not spontaneously broken
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Employing Eq. (7), these β−functions can be rewritten in T and z, leading to

βT ≡ µ
dT

dµ
= −64π

z2

Λ4
,

βz ≡ µ
dz

dµ
=

1− 8πT

4πT
z −

64π

T 2Λ4
z3. (9)

These can be used to obtain the scaling behaviour of the Thirring model,

βg ≡ µ
dg

dµ
= −64π

m2

Λ2
,

βm ≡ µ
dm

dµ
=

−2(g + π
2 )

g + π
m−

256π3

(g + π)2Λ2
m3. (10)

III. DISCUSSION

From Eq. (10), it is clear that the value g = −π/2 plays a crucial role1. When g < −π/2, the RG evolution drives the
renormalised m to zero at low energy. This means m/Λ → 0, and then βg = 0. On the other hand, when g > −π/2,
the renormalised m exhibits the opposite behaviour, and will grow when the theory flows towards the IR limit. This
results in βg = 0, i.e., asymptotic freedom.
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1 As mentioned earlier in this note, g > −π is always required because of unitarity.
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Conclusion and outlook
• Evidence for BKT phase transition found using MPS  

• Current work for more detailed probe of the phase structure:  
 

• Current and future projects for this model:

More simulations at small fermion masses (done!)
Eigenvalue spectrum of the transfer matrix

Spectrum

  Real-time evolution with a quench 
(dynamical phase transition?)

Chiral symmetry is not spontaneously broken


