Investigation of the $1+1$ dimensional Thirring model using the method of matrix product states

Contribution to lattice 2018 proceedings, and article in preparation

C.-J. David Lin

National Chiao-Tung University
In collaboration with Mari Carmen Banuls (MPQ Munich), Krzysztof Cichy (Adam Mickiewicz Univ.), Ying-Jer Kao (National Taiwan Univ.), Yu-Ping Lin (Univ. of Colorado, Boulder), David T.-L. Tan (National Chaio-Tung Univ.)

Tensor networks from simulation to holography II, DESY Zeuthen, Berlin 04/03/2019

Outline

- Preliminaries: motivation and the continuum theory
- Lattice formulation and the MPS
- Numerical results for the phase structure
- Conclusion and outlook

Preliminaries

The standard strategy

Hamiltonian (operator) formalism for QFT

> Quantum spin model

Obtaining the ground state via MPS techniques

Compute correlators and excited state spectrum

Motivation

- New formulation for lattice field theory
- No sign problem
- Real-time dynamics in quantum field theories
- Quantum computation for QFT's.

In this talk: Kosterlitz-Thouless phase transition

The $1+1$ dimensional Thirring model and its duality to the sine-Gordon model

$$
\begin{aligned}
& S_{\mathrm{Th}}[\psi, \bar{\psi}]=\int d^{2} x\left[\bar{\psi} i \gamma^{\mu} \partial_{\mu} \psi-m_{0} \bar{\psi} \psi-\frac{g}{2}\left(\bar{\psi} \gamma_{\mu} \psi\right)^{2}\right] \\
& S_{\mathrm{SG}}[\phi]=\int d^{2} x\left[\frac{1}{2} \partial_{\mu} \phi(x) \partial^{\mu} \phi(x)+\frac{\alpha_{0}}{\kappa^{2}} \cos (\kappa \phi(x))\right] \\
& \xrightarrow{\phi \rightarrow \phi / \kappa, \text { and } \kappa^{2}=t} \frac{1}{t} \int d^{2} x\left[\frac{1}{2} \partial_{\mu} \phi(x) \partial^{\mu} \phi(x)+\alpha_{0} \cos (\phi(x))\right]
\end{aligned}
$$

Works in the zero-charge sector

Dualities and phase structure

Thirring	sine-Gordon	XY
g	$\frac{4 \pi^{2}}{t}-\pi$	$\frac{T}{K}-\pi$

* The K-T phase transition at $T \sim K \pi / 2$ in the XY model.

$$
g \sim-\pi / 2, \text { Coleman's instability point }
$$

\star The phase boundary at $t \sim 8 \pi$ in the sine-Gordon theory.
\rightarrow The cosine term becomes relevant or irrelevant.

Thirring	sine-Gordon
$\bar{\psi} \gamma_{\mu} \psi$	$\frac{1}{2 \pi} \epsilon_{\mu \nu} \partial_{\nu} \phi$
$\bar{\psi} \psi$	$\frac{\Lambda}{\pi} \cos \phi$

RG flows of the Thirring model

Reminder: Kosterlitz equations

$$
\begin{aligned}
\beta_{g} & \equiv \mu \frac{d g}{d \mu}=-64 \pi \frac{m^{2}}{\Lambda^{2}} \\
\beta_{m} & \equiv \mu \frac{d m}{d \mu}=\frac{-2\left(g+\frac{\pi}{2}\right)}{g+\pi} m-\frac{256 \pi^{3}}{(g+\pi)^{2} \Lambda^{2}} m^{3}
\end{aligned}
$$

\star Massless Thirring model is a conformal field theory

Lattice simulations and the MPS

Operator formalism and the Hamiltonian

- Operator formaliam of the Thirring model Hamiltonian
C.R. Hagen, 1967

$$
H_{\mathrm{Th}}=\int d x\left[-i \bar{\psi} \gamma^{1} \partial_{1} \psi+m_{0} \bar{\psi} \psi+\frac{g}{4}\left(\bar{\psi} \gamma^{0} \psi\right)^{2}-\frac{g}{4}\left(1+\frac{2 g}{\pi}\right)^{-1}\left(\bar{\psi} \gamma^{1} \psi\right)^{2}\right]
$$

- Staggering, J-W transformation $\left(S_{j}^{ \pm}=S_{j}^{x} \pm i S_{j}^{y}\right)$:
J. Kogut and L. Susskind, 1975; A. Luther, 1976

$$
\begin{gathered}
\bar{H}_{X X Z}=\nu(g)\left[-\frac{1}{2} \sum_{n}^{N-2}\left(S_{n}^{+} S_{n+1}^{-}+S_{n+1}^{+} S_{n}^{-}\right)+a \tilde{m}_{0} \sum_{n}^{N-1}(-1)^{n}\left(S_{n}^{z}+\frac{1}{2}\right)+\Delta(g) \sum_{n}^{N-1}\left(S_{n}^{z}+\frac{1}{2}\right)\left(S_{n+1}^{z}+\frac{1}{2}\right)\right] \\
\nu(g)=\frac{2 \gamma}{\pi \sin (\gamma)}, \quad \tilde{m}_{0}=\frac{m_{0}}{\nu(g)}, \Delta(g)=\cos (\gamma), \text { with } \gamma=\frac{\pi-g}{2}
\end{gathered}
$$

Practice of MPS

One step in a sweep of finite-size DMRG

* Open BC
\star Random tensors for the smallest bond dim

Simulation details

- Matrix product operator for the Hamiltonian

$$
\begin{gathered}
W^{[n]}=\left(\begin{array}{cccccc}
1_{2 \times 2} & -\frac{1}{2} S^{+} & -\frac{1}{2} S^{-} & 2 \lambda S^{z} & \Delta S^{z} & \beta_{n} S^{z}+\alpha 1_{2 \times 2} \\
0 & 0 & 0 & 0 & 0 & S^{-} \\
0 & 0 & 0 & 0 & 0 & S^{+} \\
0 & 0 & 0 & 1 & 0 & S^{z} \\
0 & 0 & 0 & 0 & 0 & S^{z} \\
0 & 0 & 0 & 0 & 0 & 1_{2 \times 2}
\end{array}\right) \\
\beta_{n}=\Delta+(-1)^{n} \tilde{m}_{0} a-2 \lambda S_{\text {target }}, \alpha=\lambda\left(\frac{1}{4}+\frac{S_{\text {target }}^{2}}{N}\right)+\frac{\Delta}{4}
\end{gathered}
$$

- Choices of parameters
\star About twenty values of $\Delta(g)$, ranging from -0.9 to 1.0
* $\tilde{m}_{0} a=0.0,0.1,0.2,0.3,0.4$ (run 1)
$\star \tilde{m}_{0} a=0.005,0.01,0.02,0.03,0.04,0.06,0.08,0.13,0.16$ (run 2)
\star Bond dimension $D=50,100,200,300,400,500,600$
\star System size $N=400,600,800,1000$

Convergence of DMRG

- Start from random tensors at $\mathrm{D}=50$, then go up in D
- DMRG converges fast at $\tilde{m}_{0} a \neq 0$ and $\Delta(g) \gtrsim-0.7$

Numerical results for the phase structure

Entanglement entropy

Calabrese-Cardy scaling and the central charge

$$
S_{N}(n)=\frac{c}{6} \ln \left[\frac{N}{\pi} \sin \left(\frac{\pi n}{N}\right)\right]+k
$$

Calabrese-Cardy scaling observed at all values of $\Delta(g)$ for $\tilde{m}_{0} a=0$

Entanglement entropy

Calabrese-Cardy scaling and the central charge

$$
S_{N}(n)=\frac{c}{6} \ln \left[\frac{N}{\pi} \sin \left(\frac{\pi n}{N}\right)\right]+k
$$

\star Calabrese-Cardy scaling observed at $\Delta(g) \lesssim-0.7$ for $\tilde{m}_{0} a \neq 0$

Entanglement entropy

Calabrese-Cardy scaling and the central charge

$$
S_{N}(n)=\frac{c}{6} \ln \left[\frac{N}{\pi} \sin \left(\frac{\pi n}{N}\right)\right]+k
$$

* Central charge is unity in the critical phase

Soliton correlators

Soliton correlators

$$
G(r)=\left\langle\psi_{+}^{\dagger}(r) \psi_{+}(0)\right\rangle, \bar{G}(r)=G(r) / G(0)
$$

\star Evidence for BKT phase transition

Chiral condensate

$$
\hat{\chi}=a|\langle\bar{\psi} \psi\rangle|=\frac{1}{N}\left|\sum_{n}(-1)^{n} S_{n}^{z}\right|
$$

* Zero-mass results reproduced using uMPS

Chiral condensate

$$
\hat{\chi}=a|\langle\bar{\psi} \psi\rangle|=\frac{1}{N}\left|\sum_{n}(-1)^{n} S_{n}^{z}\right|
$$

* Curvature at small mass in the gapped phase

Phase structure of the Thirring model

$$
\begin{aligned}
& \beta_{g} \equiv \mu \frac{d g}{d \mu} \\
&=-64 \pi \frac{m^{2}}{\Lambda^{2}}, \\
& \beta_{m} \equiv \mu \frac{d m}{d \mu}=\frac{-2\left(g+\frac{\pi}{2}\right)}{g+\pi} m-\frac{256 \pi^{3}}{(g+\pi)^{2} \Lambda^{2}} m^{3}
\end{aligned}
$$

Massless Thirring model is a conformal field theory

Conclusion and outlook

- Evidence for BKT phase transition found using MPS
\star Chiral symmetry is not spontaneously broken
- Current work for more detailed probe of the phase structure:
\star More simulations at small fermion masses (done!)
* Eigenvalue spectrum of the transfer matrix
- Current and future projects for this model:
* Real-time evolution with a quench (dynamical phase transition?)
\star Spectrum

