Frank Pollmann

Technische Universität München

Zeuthen, Mar 4 2019

Complexity of a quantum many-body problem

Diagonalize a Hamiltonian in the full many-body Hilbert space

$$|\psi\rangle = \sum_{j_1, j_2, \dots, j_L} \psi_{j_1, j_2, \dots, j_L} |j_1\rangle |j_2\rangle \dots |j_L\rangle , \ j_n = 1 \dots d$$

- ➡ Full diagonalization up to ~20 sites
- → Sparse methods up to \sim 30 sites

Outlook

Efficient representation of quantum many-body states

Brief review of Matrix-Product States

 Isometric Tensor Network States in 2D: Tensor-network state ansatz that allows for efficient contractions
 [Zaletel and FP; arXiv:1902.05100]

Generic quantum state has a d^L dimensional Hilbert space $|\psi\rangle = \sum_{j_1, j_2, \dots, j_L} \psi_{j_1, j_2, \dots, j_L} |j_1\rangle |j_2\rangle \dots |j_L\rangle$, $j_n = 1 \dots d$

Generic quantum state has a d^L dimensional Hilbert space $|\psi\rangle = \sum \psi_{j_1,j_2,\ldots,j_L} |j_1\rangle |j_2\rangle \ldots |j_L\rangle , \ j_n = 1 \ldots d$ j_1, j_2, \ldots, j_L

Decompose a pure state into a superposition of product states (Schmidt decomposition)

$$|\psi\rangle = \sum_{i,j} C_{i,j} |i\rangle_A \otimes |j\rangle_B = \sum_{\alpha} \Lambda_{\alpha} |\alpha\rangle_A \otimes |\alpha\rangle_B$$

with $\langle \alpha | \alpha' \rangle = \delta_{\alpha \alpha'}$

Generic quantum state has a d^L dimensional Hilbert space $|\psi\rangle = \langle \psi_{j_1,j_2,\ldots,j_L} |j_1\rangle |j_2\rangle \ldots |j_L\rangle , \ j_n = 1 \ldots d$ i_1, i_2, \dots, i_L

Decompose a pure state into a superposition of product states (**Schmidt decomposition**)

$$|\psi
angle = \sum_{i,j} C_{i,j} |i
angle_A \otimes |j
angle_B = \sum_{lpha} \Lambda_{lpha} |lpha
angle_A \otimes |lpha
angle_B$$

with $\langle lpha | lpha'
angle = \delta_{lpha lpha'}$

Entanglement entropy as a measure for the amount of entanglement $S = -\sum_{\alpha} \Lambda_{\alpha}^2 \log \Lambda_{\alpha}^2$

Area law for ground states of local (gapped) Hamiltonians in ID systems

 $S(L) = {
m const.}$ [Srednicki '93, Hastings '07]

Area law for ground states of local (gapped) Hamiltonians in ID systems

 $S(L)={
m const.}$ [Srednicki '93, Hastings '07]

Many body Hilbert space
Area law states
$\left(\begin{array}{c} \psi_0\rangle \\ \bullet \end{array} \right)$

All ground states live in a tiny corner of the Hilbert space!

Area law for ground states of local (gapped) Hamiltonians in ID systems

 $S(L)={
m const.}$ [Srednicki '93, Hastings '07]

All ground states live in a tiny corner of the Hilbert space!

Matrix-Product States

Matrix-product states (MPS): Reduction of the number of variables: $d^L \rightarrow L d\chi^2_{[M. Fannes et al. 92]}$ $\psi_{j_1, j_2, j_3, j_4, j_5} = \underbrace{M^{[1]}_{\uparrow} M^{[2]}_{\uparrow} M^{[3]}_{\uparrow} M^{[4]}_{\uparrow} M^{[5]}}_{\uparrow \uparrow \uparrow \uparrow \uparrow} \begin{bmatrix} M^{j}_{\alpha, \beta} = \alpha & M \\ M^{j}_{\alpha, \beta} = \alpha & M \\ j = 1 \dots \chi \\ j = 1 \dots d \end{bmatrix}$

Matrix-Product States

Matrix-product states (MPS): Reduction of the number of variables: $d^L \rightarrow Ld\chi^2_{[M. Fannes et al. 92]}$ $\psi_{j_1, j_2, j_3, j_4, j_5} = \underbrace{M^{[1]} M^{[2]} M^{[3]} M^{[4]} M^{[5]}}_{\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow} A^{j}_{\alpha, \beta} = \alpha \underbrace{M^{j}}_{j} \beta$ $\alpha, \beta = 1...\chi$ j = 1...d

Canonical form: Use the gauge degree of freedom $(A^j = XM^jX^{-1})$ to find a convenient representation

Matrix-Product States

Matrix-product states (MPS): Reduction of the number of variables: $d^L \rightarrow Ld\chi^2_{[M. Fannes et al. 92]}$ $\psi_{j_1, j_2, j_3, j_4, j_5} = \underbrace{M^{[1]} M^{[2]} M^{[3]} M^{[4]} M^{[5]}}_{\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow} A^{j}_{\alpha, \beta} = \alpha \underbrace{M^{j}}_{j} \beta$ $\alpha, \beta = 1...\chi$ j = 1...d

Canonical form: Use the gauge degree of freedom $(A^j = XM^jX^{-1})$ to find a convenient representation

Center matrix Λ represents wave function

$$|\psi\rangle = \sum_{\alpha,\beta,j} \Lambda^{j}_{\alpha,\beta} |\alpha\rangle |j\rangle |\beta\rangle$$

(orthogonal states $|j\rangle$, $|\alpha\rangle$, $|\beta\rangle$)

Moving the center matrix: $\Lambda^{\ell} B^{[\ell+1]} = A^{[\ell]} \Lambda^{[\ell+1]}$ accomplished by an **orthogonal factorization** (e.g. QR or SVD)

Moving the center matrix: $\Lambda^{\ell} B^{[\ell+1]} = A^{[\ell]} \Lambda^{[\ell+1]}$ accomplished by an **orthogonal factorization** (e.g. QR or SVD)

Moving the center matrix: $\Lambda^{\ell} B^{[\ell+1]} = A^{[\ell]} \Lambda^{[\ell+1]}$ accomplished by an **orthogonal factorization** (e.g. QR or SVD)

Moving the center matrix: $\Lambda^{\ell} B^{[\ell+1]} = A^{[\ell]} \Lambda^{[\ell+1]}$ accomplished by an **orthogonal factorization** (e.g. QR or SVD)

$$A^{[1]} A^{[2]} A^{[3]} A^{[4]} \Lambda^{[5]}$$

Find the ground state iteratively

Moving the center matrix: $\Lambda^{\ell} B^{[\ell+1]} = A^{[\ell]} \Lambda^{[\ell+1]}$ accomplished by an **orthogonal factorization** (e.g. QR or SVD)

Find the ground state iteratively

Moving the center matrix: $\Lambda^{\ell} B^{[\ell+1]} = A^{[\ell]} \Lambda^{[\ell+1]}$ accomplished by an **orthogonal factorization** (e.g. QR or SVD)

$$A^{[1]} A^{[2]} A^{[3]} A^{[4]} \Lambda^{[5]}$$

Find the **ground state** iteratively

Moving the center matrix: $\Lambda^{\ell} B^{[\ell+1]} = A^{[\ell]} \Lambda^{[\ell+1]}$ accomplished by an **orthogonal factorization** (e.g. QR or SVD)

$$A^{[1]} A^{[2]} A^{[3]} A^{[4]} \Lambda^{[5]}$$

Find the **ground state** iteratively

Locally minimize the energy of $H_{\alpha i\beta;\alpha' i'\beta'}$ (e.g., Lanczos) **Density matrix renormalization group** (DMRG) [White '92, Schollwoeck']]

MPS capture ID area law \rightarrow Exponential scaling in 2D

MPS capture ID area law \rightarrow Exponential scaling in 2D

How to generalize the MPS approach to 2D?

MPS capture ID area law \rightarrow Exponential scaling in 2D

$$\psi_{j_1,j_2,j_3,j_4,j_5} \approx \overset{M^{[1]} M^{[2]} M^{[3]} M^{[4]} M^{[5]}}{\bullet}$$

How to generalize the MPS approach to 2D?

Tensor Network States (TNS)

[Maeshima et al. '01, Verstraete and Cirac '04]

MPS capture ID area law \rightarrow Exponential scaling in 2D

$$\psi_{j_1,j_2,j_3,j_4,j_5} \approx \overset{M^{[1]} M^{[2]} M^{[3]} M^{[4]} M^{[5]}}{\bullet}$$

How to generalize the MPS approach to 2D?

- Tensor Network States (TNS) [Maeshima et al. '01, Verstraete and Cirac '04]
- Capture 2D area law
- Difficult to handle numerically: Exact contraction of the 2D network is still exponentially hard (2)

Recall: Canonical form of ID MPS

Recall: Canonical form of ID MPS

Isometric TNS

 $A^{[1]} A^{[2]} \Lambda^{[3]} B^{[4]} B^{[5]}$

Recall: Canonical form of ID MPS

(Isometries)

=1

Isometric TNS

 $A^{[1]} A^{[2]} \Lambda^{[3]} B^{[4]} B^{[5]}$

Isometric tensors are
 efficiently contractable

Recall: Canonical form of ID MPS

(Isometries)

=1

Isometric TNS

 $A^{[1]} A^{[2]} \Lambda^{[3]} B^{[4]} B^{[5]}$

- Isometric tensors are
 efficiently contractable
- Orthogonality center column is a
 ID MPS: Standard DMRG techniques

Recall: Canonical form of ID MPS

(Isometries)

=1

Isometric TNS

 $A^{[1]} A^{[2]} \Lambda^{[3]} B^{[4]} B^{[5]}$

- Isometric tensors are
 efficiently contractable
- Orthogonality center column is a
 ID MPS: Standard DMRG techniques

Subset of TNS: Unclear what its variational power is!

Recall: Canonical form of ID MPS

Isometric TNS

 $A^{[1]} A^{[2]} \Lambda^{[3]} B^{[4]} B^{[5]}$

- Subregions with only outgoing arrows have isometric boundary maps
- Causal structure: time flows opposite to the direction of the arrows

How to shift the orthogonality center?

Recall: **ID MPS** $\Lambda^{\ell} B^{[\ell+1]} = A^{[\ell]} \Lambda^{[\ell+1]}$ solved by QR or SVD

How to shift the orthogonality center?

Recall: **ID MPS** $\Lambda^{\ell} B^{[\ell+1]} = A^{[\ell]} \Lambda^{[\ell+1]}$ solved by QR or SVD

Not possible for 2D TNS as it would destroy the locality of Λ

How to shift the orthogonality center?

Recall: **ID MPS** $\Lambda^{\ell} B^{[\ell+1]} = A^{[\ell]} \Lambda^{[\ell+1]}$ solved by QR or SVD

Not possible for 2D TNS as it would destroy the locality of Λ

Solve the variational problem:

How to shift the orthogonality center?

Recall: **ID MPS** $\Lambda^{\ell} B^{[\ell+1]} = A^{[\ell]} \Lambda^{[\ell+1]}$ solved by QR or SVD **Not possible for 2D TNS as it would destroy the locality of** Λ

Solve the variational problem:

 $A^{[1]} \Lambda^{[2]} B^{[3]} B^{[4]}$

How to shift the orthogonality center?

Recall: **ID MPS** $\Lambda^{\ell} B^{[\ell+1]} = A^{[\ell]} \Lambda^{[\ell+1]}$ solved by QR or SVD **Not possible for 2D TNS as it would destroy the locality of** Λ

Solve the variational problem:

 $A^{[1]} A^{[2]} \Lambda B^{[3]} B^{[4]}$

How to shift the orthogonality center?

Recall: **ID MPS** $\Lambda^{\ell} B^{[\ell+1]} = A^{[\ell]} \Lambda^{[\ell+1]}$ solved by QR or SVD **Not possible for 2D TNS as it would destroy the locality of** Λ

Solve the variational problem:

Sequential splitting based on disentangling: "Moses Move" (MM)

Convert quasi ID MPS to isometric TNS

"Peel off" layers from MPS representation of 2D state

- Sequentially disentangle the state
- Efficient compression

Convert quasi ID MPS to isometric TNS

"'Peel off" layers from MPS representation of 2D state

2D transverse field Ising Model (g = 3.5)

$$H = -\sum_{\langle i,j\rangle} \sigma_i^z \sigma_j^z - g \sum_i \sigma^x$$

 Sequentially disentangle the state

Efficient compression

Ground states of 2D Hamiltonians

Sequentially apply ID Time-Evolving Block Decimation (TEBD) algorithm on the center columns/rows: 2nd order [Vidal '03]

Ground states of 2D Hamiltonians

Sequentially apply ID Time-Evolving Block Decimation (TEBD) algorithm on the center columns/rows: 2nd order [Vidal '03]

2D transverse field Ising Model (g = 3.5)

$$H = -\sum_{\langle i,j \rangle} \sigma_i^z \sigma_j^z - g \sum_i \sigma^x$$

Imaginary time evolution: $|\psi_0\rangle$

Real time evolution of 2D Hamiltonians

Real time evolution of $|\psi_0(t)\rangle = e^{-iHt} \sigma^+ |\psi_0\rangle$ for the transverse field Ising model (paramagnetic phase)

 ▶ Good convergence at small bond dimension X

[Lin, Zaletel and FP; work in progress]

Summary

2D tensor-network state ansatz that allows for efficient contractions

- Subset of TNS: Variational power?
- Sequential splitting based on disentangling Moses Move
- TEBD² to obtain ground states and perform time evolution

[[]Zaletel and FP; arXiv:1902.05100]