Isometric Tensor Network States

Frank Pollmann

Technische Universität München

Complexity of a quantum many-body problem

Diagonalize a Hamiltonian in the full many-body Hilbert space

$$
|\psi\rangle=\sum_{j_{1}, j_{2}, \ldots, j_{L}} \psi_{j_{1}, j_{2}, \ldots, j_{L}}\left|j_{1}\right\rangle\left|j_{2}\right\rangle \ldots\left|j_{L}\right\rangle, j_{n}=1 \ldots d
$$

\Rightarrow Full diagonalization up to ~ 20 sites
\Rightarrow Sparse methods up to ~ 30 sites

Outlook

Efficient representation of quantum many-body states

- Brief review of Matrix-Product States
- Isometric Tensor Network States in 2D: Tensor-network state ansatz that allows for efficient contractions
[Zaletel and FP; arXiv: I 902.05 I 00]

Entanglement

Generic quantum state has a d^{L} dimensional Hilbert space

$$
|\psi\rangle=\sum_{j_{1}, j_{2}, \ldots, j_{L}} \psi_{j_{1}, j_{2}, \ldots, j_{L}}\left|j_{1}\right\rangle\left|j_{2}\right\rangle \ldots\left|j_{L}\right\rangle, j_{n}=1 \ldots d
$$

Entanglement

Generic quantum state has a d^{L} dimensional Hilbert space $|\psi\rangle=\sum_{j_{1}, j_{2}, \ldots, j_{L}} \psi_{j_{1}, j_{2}, \ldots, j_{L}}\left|j_{1}\right\rangle\left|j_{2}\right\rangle \ldots\left|j_{L}\right\rangle, j_{n}=1 \ldots d$

Decompose a pure state into a superposition of product states (Schmidt decomposition)

$$
|\psi\rangle=\sum_{i, j} C_{i, j}|i\rangle_{A} \otimes|j\rangle_{B}=\sum_{\alpha} \Lambda_{\alpha}|\alpha\rangle_{A} \otimes|\alpha\rangle_{B}
$$

with $\left\langle\alpha \mid \alpha^{\prime}\right\rangle=\delta_{\alpha \alpha^{\prime}}$

Entanglement

Generic quantum state has a d^{L} dimensional Hilbert space $|\psi\rangle=\sum_{j_{1}, j_{2}, \ldots, j_{L}} \psi_{j_{1}, j_{2}, \ldots, j_{L}}\left|j_{1}\right\rangle\left|j_{2}\right\rangle \ldots\left|j_{L}\right\rangle, j_{n}=1 \ldots d$

Decompose a pure state into a superposition of product states (Schmidt decomposition)

$$
|\psi\rangle=\sum_{i, j} C_{i, j}|i\rangle_{A} \otimes|j\rangle_{B}=\sum_{\alpha} \Lambda_{\alpha}|\alpha\rangle_{A} \otimes|\alpha\rangle_{B}
$$

with $\left\langle\alpha \mid \alpha^{\prime}\right\rangle=\delta_{\alpha \alpha^{\prime}}$

Entanglement entropy as a measure for the amount of entanglement $S=-\sum_{\alpha} \Lambda_{\alpha}^{2} \log \Lambda_{\alpha}^{2}$

Entanglement

Area law for ground states of local (gapped) Hamiltonians in ID systems
$S(L)=$ const. [5redickidi ${ }^{93}$, Hastings 07]

Entanglement

Area law for ground states of local (gapped) Hamiltonians in ID systems
$S(L)=$ const. [5redincki ${ }^{9} 3$, Hastings 0 07]

All ground states live in a tiny corner of the Hilbert space!

Entanglement

Area law for ground states of local (gapped) Hamiltonians in ID systems
$S(L)=$ const. [Sredicick 93 , Hastings 07]

All ground states live in a tiny corner of the Hilbert space!

Matrix-Product States

Matrix-product states (MPS): Reduction of the number of variables: $d^{L} \rightarrow L d \chi^{2}{ }_{\text {[M. Fannes et a. 92] }}$

$$
\psi_{j_{1}, j_{2}, j_{3}, j_{4}, j_{5}}=\underbrace{M^{[1]} M^{[2]} M^{[3]} M^{[4]} M^{[5]}} \quad \begin{aligned}
M_{\alpha, \beta}^{j} & =\alpha-\overbrace{j} \\
\alpha, \beta & =1 \ldots \chi \\
j & =1 \ldots d
\end{aligned}
$$

Matrix-Product States

Matrix-product states (MPS): Reduction of the number of variables: $d^{L} \rightarrow L d \chi^{2}{ }_{\text {[M. Fannes et al. 92] }}$

$$
\psi_{j_{1}, j_{2}, j_{3}, j_{4}, j_{5}}=\overbrace{i}^{M^{[1]} M^{[2]} M^{[3]} M^{[4]} M^{[5]}} \begin{aligned}
M_{\alpha, \beta}^{j} & =\alpha-\overbrace{j} \\
\alpha, \beta & =1 \ldots \chi \\
j & =1 \ldots d
\end{aligned}
$$

Canonical form: Use the gauge degree of freedom $\left(A^{j}=X M^{j} X^{-1}\right)$ to find a convenient representation

(Isometries)

Matrix-Product States

Matrix-product states (MPS): Reduction of the number of variables: $d^{L} \rightarrow L d \chi^{2}{ }_{\text {[M. Fannes et al. 22] }}$

$$
\psi_{j_{1}, j_{2}, j_{3}, j_{4}, j_{5}}=\stackrel{M}{M}_{M^{[1]} M^{[2]} M^{[3]} M^{[4]} M^{[5]}} \quad \begin{aligned}
M_{\alpha, \beta}^{j} & =\alpha-\infty \\
\alpha, \beta & =1 \ldots \chi \\
j & =1 \ldots d
\end{aligned}
$$

Canonical form: Use the gauge degree of freedom $\left(A^{j}=X M^{j} X^{-1}\right)$ to find a convenient representation

(Isometries)

Center matrix Λ represents wave function

$$
|\psi\rangle=\sum_{\alpha, \beta, j} \Lambda_{\alpha, \beta}^{j}|\alpha\rangle|j\rangle|\beta\rangle \quad \text { (orthogonal states }|j\rangle,|\alpha\rangle,|\beta\rangle \text {) }
$$

Density Matrix Renormalization Group

Moving the center matrix: $\Lambda^{\ell} B^{[\ell+1]}=A^{[\ell]} \Lambda^{[\ell+1]}$ accomplished by an orthogonal factorization (e.g. QR or SVD)

Density Matrix Renormalization Group

Moving the center matrix: $\Lambda^{\ell} B^{[\ell+1]}=A^{[\ell]} \Lambda^{[\ell+1]}$ accomplished by an orthogonal factorization (e.g. QR or SVD)

Density Matrix Renormalization Group

Moving the center matrix: $\Lambda^{\ell} B^{[\ell+1]}=A^{[\ell]} \Lambda^{[\ell+1]}$ accomplished by an orthogonal factorization (e.g. QR or SVD)

Density Matrix Renormalization Group

Moving the center matrix: $\Lambda^{\ell} B^{[\ell+1]}=A^{[\ell]} \Lambda^{[\ell+1]}$ accomplished by an orthogonal factorization (e.g. QR or SVD)

Find the ground state iteratively

Density Matrix Renormalization Group

Moving the center matrix: $\Lambda^{\ell} B^{[\ell+1]}=A^{[\ell]} \Lambda^{[\ell+1]}$ accomplished by an orthogonal factorization (e.g. QR or SVD)

Find the ground state iteratively

Density Matrix Renormalization Group

Moving the center matrix: $\Lambda^{\ell} B^{[\ell+1]}=A^{[\ell]} \Lambda^{[\ell+1]}$ accomplished by an orthogonal factorization (e.g. QR or SVD)

Find the ground state iteratively

$$
H_{\alpha i \beta ; \alpha^{\prime} i^{\prime} \beta^{\prime}}=
$$

Density Matrix Renormalization Group

Moving the center matrix: $\Lambda^{\ell} B^{[\ell+1]}=A^{[\ell]} \Lambda^{[\ell+1]}$ accomplished by an orthogonal factorization (e.g. QR or SVD)

Find the ground state iteratively

Locally minimize the energy of $H_{\alpha i \beta ; \alpha^{\prime} i^{\prime} \beta^{\prime}}$ (e.g., Lanczos)
Density matrix renormalization group (DMRG) white 92 , sholwoeck 11

Tensor Network States in 2D

MPS capture ID area law \rightarrow Exponential scaling in 2D

$$
\psi_{j_{1}, j_{2}, j_{3}, j_{4}, j_{5}} \approx M^{[1]} M^{[2]} M^{[3]} M^{[4]} M^{[5]}
$$

Tensor Network States in 2D

MPS capture ID area law \rightarrow Exponential scaling in 2D
$\psi_{j_{1}, j_{2}, j_{3}, j_{4}, j_{5}} \approx M^{[1]} M^{[2]} M^{[3]} M^{[4]} M^{[5]}$
How to generalize the MPS approach to 2D?

Tensor Network States in 2D

MPS capture ID area law \rightarrow Exponential scaling in 2D

$$
\psi_{j_{1}, j_{2}, j_{3}, j_{4}, j_{5}} \approx \overbrace{\bullet}^{M^{[1]}} M^{[2]} \mathbb{R}^{[3]} M^{[4]} M^{[5]}
$$

How to generalize the MPS approach to 2D?

- Tensor Network States (TNS) [Maeshima et al. 'OI ,Verstraete and Cirac '04]

Tensor Network States in 2D

MPS capture ID area law \rightarrow Exponential scaling in 2D

$$
\psi_{j_{1}, j_{2}, j_{3}, j_{4}, j_{5}} \approx \overbrace{\bullet}^{M^{[1]}} \mathbb{R}^{[2]} \mathbb{R}^{[3]} M^{[4]} M^{[5]}
$$

How to generalize the MPS approach to 2D?

- Tensor Network States (TNS) [Maeshima et al. 'OI ,Verstraete and Cirac '04]
- Capture 2D area law

- Difficult to handle numerically: Exact contraction of the 2D network is still exponentially hard

Isometric Tensor Network States in 2D

Recall: Canonical form of ID MPS

(Isometries)

Isometric Tensor Network States in 2D

Recall: Canonical form of ID MPS

(Isometries)
Isometric TNS
$A^{[1]} A^{[2]} \Lambda^{[3]} B^{[4]} B^{[5]}$

Isometric Tensor Network States in 2D

Recall: Canonical form of ID MPS

(Isometries)
Isometric TNS

- Isometric tensors are efficiently contractable

Isometric Tensor Network States in 2D

Recall: Canonical form of ID MPS

(Isometries)
Isometric TNS
$A^{[1]} A^{[2]} \Lambda^{[3]} B^{[4]} B^{[5]}$

- Isometric tensors are efficiently contractable
- Orthogonality center column is a ID MPS: Standard DMRG techniques

Isometric Tensor Network States in 2D

Recall: Canonical form of ID MPS

(Isometries)
Isometric TNS
$A^{[1]} A^{[2]} \Lambda^{[3]} B^{[4]} B^{[5]}$

- Isometric tensors are efficiently contractable
- Orthogonality center column is a ID MPS: Standard DMRG techniques
- Subset of TNS: Unclear what its variational power is!

Isometric Tensor Network States in 2D

Recall: Canonical form of ID MPS

(Isometries)
Isometric TNS
$A^{[1]} A^{[2]} \Lambda^{[3]} B^{[4]} B^{[5]}$

- Subregions with only outgoing arrows have isometric boundary maps
- Causal structure: time flows opposite to the direction of the arrows

Isometric Tensor Network States in 2D

How to shift the orthogonality center?
Recall: ID MPS $\Lambda^{\ell} B^{[t+1]}=A^{[\epsilon]} \Lambda^{[\ell+1]}$ solved by QR or SVD

Isometric Tensor Network States in 2D

How to shift the orthogonality center?
Recall: ID MPS $\Lambda^{\ell} B^{[\ell+1]}=A^{[\ell]} \Lambda^{[\ell+1]}$ solved by QR or SVD
Not possible for 2D TNS as it would destroy the locality of Λ

Isometric Tensor Network States in 2D

How to shift the orthogonality center?
Recall: ID MPS $\Lambda^{\ell} B^{[\ell+1]}=A^{[\ell]} \Lambda^{[\ell+1]}$ solved by QR or SVD
Not possible for 2D TNS as it would destroy the locality of Λ
Solve the variational problem:

Isometric Tensor Network States in 2D

How to shift the orthogonality center?
Recall: ID MPS $\Lambda^{\ell} B^{[\ell+1]}=A^{[\ell]} \Lambda^{[\ell+1]}$ solved by QR or SVD
Not possible for 2D TNS as it would destroy the locality of Λ
Solve the variational problem:

[Zaletel and FP; arxiv: I 902.05 I 00]

Isometric Tensor Network States in 2D

How to shift the orthogonality center?
Recall: ID MPS $\Lambda^{\ell} B^{[t+1]}=A^{[\ell]} \Lambda^{[t+1]}$ solved by QR or SVD
Not possible for 2D TNS as it would destroy the locality of Λ
Solve the variational problem:

[Zaletel and FP; arxiv: I 902.05 I 00]

Isometric Tensor Network States in 2D

How to shift the orthogonality center?
Recall: ID MPS $\Lambda^{\ell} B^{[\ell+1]}=A^{[\ell]} \Lambda^{[\ell+1]}$ solved by QR or SVD
Not possible for 2D TNS as it would destroy the locality of Λ
Solve the variational problem:

[Zaletel and FP; arxiv: I 902.05 I 00]

Isometric Tensor Network States in 2D

Sequential splitting based on disentangling: "Moses Move" (MM)

[Zaletel and FP; arxiv: I 902.05 I 00]

Convert quasi ID MPS to isometric TNS

"Peel off" layers from MPS representation of 2D state

- Sequentially disentangle the state
- Efficient compression

Convert quasi ID MPS to isometric TNS

"Peel off" layers from MPS representation of 2D state

- Sequentially disentangle the state
- Efficient compression

[Zaletel and FP; arxiv: I 902.05 I 00]

Ground states of 2D Hamiltonians

Sequentially apply ID Time-Evolving Block Decimation (TEBD) algorithm on the center columns/rows: $2^{\text {nd }}$ order [Vidal '03]

Ground states of 2D Hamiltonians

Sequentially apply ID Time-Evolving Block Decimation (TEBD) algorithm on the center columns/rows: $2^{\text {nd }}$ order [Vidal '03]

2D transverse field Ising Model $(g=3.5)$
$H=-\sum_{\langle i, j\rangle} \sigma_{i}^{z} \sigma_{J}^{z}-g \sum_{i} \sigma^{x}$
Imaginary time evolution: $\left|\psi_{0}\right\rangle$

[Zaletel and FP; arxiv:I902.05I00]

Real time evolution of 2D Hamiltonians

Real time evolution of $\left|\psi_{0}(t)\right\rangle=e^{-i H t} \sigma^{+}\left|\psi_{0}\right\rangle$ for the transverse field Ising model (paramagnetic phase)

- Good convergence at small bond dimension χ

Summary

2D tensor-network state ansatz that allows for efficient contractions

- Subset of TNS: Variational power?
- Sequential splitting based on disentangling Moses Move
- TEBD ${ }^{2}$ to obtain ground states and perform time evolution
[Zaletel and FP; arXiv: I 902.05 I 00]

Thank You!

