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Complexity of a quantum many-body problem

Diagonalize a Hamiltonian in the full many-body Hilbert space

➡ Full diagonalization up to ~20 sites
➡ Sparse methods up to ~30 sites  

| i =
X

j1,j2,...,jL

 j1,j2,...,jL |j1i|j2i . . . |jLi , jn = 1 . . . d

Spin 1/2
| i



‣ Brief review of Matrix-Product States  

‣ Isometric Tensor Network States in 2D:  
Tensor-network state ansatz that allows  
for efficient contractions 
[Zaletel and FP; arXiv:1902.05100]

Outlook

Efficient representation of quantum many-body states 
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Area law for ground states of local (gapped) Hamiltonians  
in 1D systems

Entanglement

S(L) = const. [Srednicki  ’93, Hastings ’07]
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Entanglement

All ground states live in a tiny corner of the Hilbert space!

S(L) = const. [Srednicki  ’93, Hastings ’07]
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Matrix-Product States

Matrix-product states (MPS): Reduction of the number 
of variables: [M. Fannes et al. 92] dL ! Ld�2

 j1,j2,j3,j4,j5 ⇡ M[1] M[2] M[3] M[4] M[5]
Mj

α,β = α β
M
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j = 1…d
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Aj = XMjX−1

A

A*
=1

B

B*
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|ψ⟩ = ∑
α,β,j

Λj
α,β |α⟩ | j⟩ |β⟩

Center matrix     represents wave function  Λ

(orthogonal states                )| j⟩, |α⟩, |β⟩

= α, β = 1…χ
j = 1…d
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Density Matrix Renormalization GroupA[1] A[2] Λ[3] B[4] B[5]
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Find the ground state iteratively

 
Locally minimize the energy of                    (e.g., Lanczos)  
Density matrix renormalization group (DMRG)

H↵i�;↵0i0�0

[White ’92, Schollwoeck ‘11]
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Isometric Tensor Network States in 2D

Recall: Canonical form of 1D MPS

A[1] A[2] Λ[3] B[4] B[5] A

A*
=1

B

B*
=1 (Isometries)

Isometric TNS

A[1] A[2] Λ[3] B[4] B[5]

‣Subregions with only outgoing  
arrows have isometric  boundary maps

‣Causal structure: time flows opposite  
to the direction of the arrows

[Zaletel and FP; arxiv:1902.05100]
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Sequential splitting based on disentangling:  “Moses Move” (MM)

Isometric Tensor Network States in 2D

[Zaletel and FP; arxiv:1902.05100]

(a)

(b)
(i) (ii) (iii) (iv)

..



Convert quasi 1D MPS to isometric TNS

(a) MM MM

(b)

‣Sequentially disentangle 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Convert quasi 1D MPS to isometric TNS

(a) MM MM

(b)

‣Sequentially disentangle 
the state

‣Efficient compression

“Peel off ” layers from MPS representation of 2D state
(a) MM MM

(b)

(a) MM MM

(b)
2D transverse field  
Ising Model (           ) g = 3.5

H = − ∑
⟨i,j⟩

σz
i σz

J − g∑
i

σx

[Zaletel and FP; arxiv:1902.05100]
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Ground states of 2D Hamiltonians 

Sequentially apply 1D Time-Evolving Block Decimation (TEBD) 
algorithm on the center columns/rows: 2nd order 
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(c)

Ground states of 2D Hamiltonians 

Sequentially apply 1D Time-Evolving Block Decimation (TEBD) 
algorithm on the center columns/rows: 2nd order 

[Zaletel and FP; arxiv:1902.05100]

[Vidal ’03]

(a) (b)

(c)

2D transverse field  
Ising Model (           ) g = 3.5

H = − ∑
⟨i,j⟩

σz
i σz

J − g∑
i

σx

Imaginary time 
evolution: |ψ0⟩

(a) (b)

(c)

…



Real time evolution of 2D Hamiltonians 

Real time evolution of                                    for  
the transverse field Ising model (paramagnetic phase)

|ψ0(t)⟩ = e−iHt σ+ |ψ0⟩

‣ Good convergence  
at small bond  
dimension χ

⟨σ
z ⟩

[Lin, Zaletel and FP; work in progress]



Summary

2D tensor-network state ansatz that allows  
for efficient contractions 

‣ Subset of  TNS: Variational power?

‣ Sequential splitting based on  
disentangling Moses Move 

‣ TEBD2 to obtain ground states and 
perform time evolution  

(b)

(c)

(a) (d)

�1,1

[Zaletel and FP; arXiv:1902.05100]

Thank You!


