MBL, Topology, and DMRG-X

Christoph Karrasch

(with Kevin Decker, Dante Kennes, Jens Eisert)

Emmy Noether-Programm Deutsche Forschungsgemeinschaft DFG

protection by topology!

loss of coherence!

finite T & disorder: FROZEN bulk excitations

protection by MBL!

finite T & disorder: FROZEN bulk excitations

Many-body localization in a disordered quantum Ising chain

Jonas A. Kjäll,¹ Jens H. Bardarson,¹ and Frank Pollmann¹

Localization protected quantum order

David A. Huse,^{1, 2} Rahul Nandkishore,¹ Vadim Oganesyan,^{3, 4} Arijeet Pal,⁵ and S. L. Sondhi²

Localization and topology protected quantum coherence at the edge of hot matter

Yasaman Bahri¹, Ronen Vosk², Ehud Altman^{1,2} & Ashvin Vishwanath¹

starting point: 1d system that has a ground state topological phase

goal: compute phase diagram for

- finite energy
- disorder
- interactions

using the 'gold standard' (DMRG)

Kitaev chain \Rightarrow failure \Rightarrow toy model used in prior papers

The Toy Model

- $H = \sum_{i} \left(\lambda_i \sigma_{i-1}^z \sigma_i^x \sigma_{i+1}^z + h_i \sigma_i^x + V_i \sigma_i^x \sigma_{i+1}^x \right)$
- random couplings drawn from normal distribution $\sigma_{\lambda} = 1$, σ_{h} , σ_{V}

start with simple limit:

•
$$h_i = V_i = 0 \Rightarrow H = \sum_i \lambda_i \underbrace{\sigma_{i-1}^z \sigma_i^x \sigma_{i+1}^z}_{O_i}$$
 with $[O_i, O_j] = 0$

• all eigenstates are MPS with bond dimension $2 \Rightarrow$ localized

• OBC: edge spins $\Sigma_L^x = \sigma_1^x \sigma_2^z$, $\Sigma_L^y = \sigma_1^y \sigma_2^z$, $\Sigma_L^z = \sigma_1^z \Rightarrow \text{topological}$

use DMRG-X to determine phase diagram at $h_i, V_i > 0$?

The Method: DMRG-X

- MBL: excited states have low entanglement
- How to find their MPS representation?

(Khemani et al.'16, Lim/Sheng'16, Kennes&CK'16, Yu et al.'17)

• GS DMRG: take MPS, sweep, update matrices to minimize energy

DMRG-X approach:

- XXZ chain $H = \sum_{i} h_i \sigma_i^z + \text{pert.} = H_0 + \text{pert.}$
- start from random eigenstate of H_0 : $|\uparrow\downarrow\downarrow\downarrow\uparrow\cdots\rangle$
- states close in energy differ vastly in their spatial structure!
- sweep, update MPS, pick state with max overlap to previous state
- here: start from eigenstate of $H_0 = \sum_i \lambda_i \sigma_{i-1}^z \sigma_i^x \sigma_{i+1}^z$ (bond dim 2)

The Method: DMRG-X

- can converge into excited eigenstate for large L = 50!
- compute physical quantities: behavior unexpected
- comparison with ED for small L: something is wrong

 $\sigma_h = 0.05, \sigma_V = 0$

The Method: DMRG-X

- compute overlap of DMRG state has with all ED states
- equal overlap with two ED states of almost same energy: edges.
- DMRG minimizes entanglement. duh.

DMRG-X not suited. study problem with ED.

Detecting Topology

- use ED to compute spectrum
- OBC: each eigenstate four-fold degenerate in TD limit
- introduce measure ΔE
- mid-spectrum states
- trivial insulator for $h_i, V_i \rightarrow \infty$ (classical Ising chain)
- \Rightarrow topological phase stable

Detecting MBL

- compute adjacent gap ratio
- localized regime: Poissonian form
- true for periodic BC
- open BC: zero-energy peak + Poissonian
- \Rightarrow always localized?!

Localization Length

scaling of entanglement entropy

 $S \sim \begin{cases} \text{vol} & \text{ergodic} \\ \text{area} & \text{localized}, L > L_{\text{loc}} \end{cases}$

- same: bi-partite spin fluctuations
- problem: degenerate spectrum!
 ⇒ use entanglement negativity

data inconclusive

Kitaev: Ground State

- Kitaev chain $H = \sum_i -t\sigma_i^x \sigma_{i+1}^x + U\sigma_i^z \sigma_{i+1}^z \frac{1}{2}\mu_i \sigma_i^z$
- topological if $|\mu| < 2t$ for U = 0 without disorder
- use variational DMRG to find phase diagram; top. stable for moderate disorder

(Gergs et al.'16)

MBL + topology: what about excited states?

Kitaev: DMRG-X

disorder:

L = 24

small enough for topology

large enough for MBL

Kitaev: DMRG-X

no intermediate regime!

finite T & disorder: FROZEN bulk excitations

- Kitaev: no "intermediate regime" found
- study toy model
- DMRG-X not suited for degenerate spectra. symmetries?!
- ED phase diagram

DMRG

(CK+..., PRB'16)

100

- MBL: ex. states have low entanglement
- How to find their MPS representation? (Pollmann et al.'16, Yu et al.'17, Lim/Sheng'16)
- most NAIVE approach: GS of $(H E)^2$

