MBL, Topology, and DMRG-X

Christoph Karrasch

(with Kevin Decker, Dante Kennes, Jens Eisert)

Technische
Universität
Braunschweig

Topology \& Disorder

protection by topology!

Topology \& Disorder

finite temperature: MOBILE bulk excitations

normal phase

top. phase

normal phase

entanglement
qbit building blocks
loss of coherence!

Topology \& Disorder

finite T \& disorder: FROZEN bulk excitations

Topology \& Disorder

finite T \& disorder: FROZEN bulk excitations

Many-body localization in a disordered quantum Ising chain

Jonas A. Kjäll, ${ }^{1}$ Jens H. Bardarson, ${ }^{1}$ and Frank Pollmann ${ }^{1}$

Localization protected quantum order
David A. Huse,,${ }^{1,2}$ Rahul Nandkishore, ${ }^{1}$ Vadim Oganesyan, ${ }^{3,4}$ Arijeet Pal, ${ }^{5}$ and S. L. Sondhi ${ }^{2}$

Localization and topology protected quantum coherence at the edge of hot matter

Yasaman Bahri ${ }^{1}$, Ronen Vosk ${ }^{2}$, Ehud Altman ${ }^{1,2}$ \& Ashvin Vishwanath ${ }^{1}$

starting point: 1d system that has a ground state topological phase goal: compute phase diagram for

- finite energy
- disorder
- interactions
using the 'gold standard' (DMRG)

Kitaev chain \Rightarrow failure \Rightarrow toy model used in prior papers

The Toy Model

- $H=\sum_{i}\left(\lambda_{i} \sigma_{i-1}^{z} \sigma_{i}^{x} \sigma_{i+1}^{z}+h_{i} \sigma_{i}^{x}+V_{i} \sigma_{i}^{x} \sigma_{i+1}^{x}\right)$
- random couplings drawn from normal distribution $\sigma_{\lambda}=1, \sigma_{h}, \sigma_{V}$ start with simple limit:
- $h_{i}=V_{i}=0 \Rightarrow H=\sum_{i} \lambda_{i} \underbrace{\sigma_{i-1}^{z} \sigma_{i}^{x} \sigma_{i+1}^{z}}_{O_{i}}$ with $\left[O_{i}, O_{j}\right]=0$
- all eigenstates are MPS with bond dimension $2 \Rightarrow$ localized
- OBC: edge spins $\Sigma_{L}^{x}=\sigma_{1}^{x} \sigma_{2}^{z}, \Sigma_{L}^{y}=\sigma_{1}^{y} \sigma_{2}^{z}, \Sigma_{L}^{z}=\sigma_{1}^{z} \Rightarrow$ topological use DMRG-X to determine phase diagram at $h_{i}, V_{i}>0!?$

The Method: DMRG-X

- MBL: excited states have low entanglement
- How to find their MPS representation?
(Khemani et al.'16, Lim/Sheng'16, Kennes\&CK'16, Yu et al.'17)
- GS DMRG: take MPS, sweep, update matrices to minimize energy

DMRG-X approach:

- XXZ chain $H=\sum_{i} h_{i} \sigma_{i}^{z}+$ pert. $=H_{0}+$ pert.
- start from random eigenstate of $H_{0}:|\uparrow \downarrow \downarrow \downarrow \uparrow \cdots\rangle$
- states close in energy differ vastly in their spatial structure!
- sweep, update MPS, pick state with max overlap to previous state
- here: start from eigenstate of $H_{0}=\sum_{i} \lambda_{i} \sigma_{i-1}^{z} \sigma_{i}^{x} \sigma_{i+1}^{z}$ (bond dim 2)

The Method: DMRG-X

- can converge into excited eigenstate for large $L=50$!
- compute physical quantities: behavior unexpected
- comparison with ED for small L : something is wrong

$\sigma_{h}=0.05, \sigma_{V}=0$

The Method: DMRG-X

- compute overlap of DMRG state has with all ED states
- equal overlap with two ED states of almost same energy: edges.
- DMRG minimizes entanglement. duh.

DMRG-X not suited. study problem with ED.

Detecting Topology

- use ED to compute spectrum
- OBC: each eigenstate four-fold degenerate in TD limit
- introduce measure ΔE
- mid-spectrum states
- trivial insulator for $h_{i}, V_{i} \rightarrow \infty$ (classical Ising chain)
\Rightarrow topological phase stable

Detecting MBL

- compute adjacent gap ratio
- localized regime: Poissonian form
- true for periodic BC
- open BC:
zero-energy peak + Poissonian
\Rightarrow always localized?!

Localization Length

- scaling of entanglement entropy

$$
S \sim \begin{cases}\text { vol } & \text { ergodic } \\ \text { area } & \text { localized, } L>L_{\mathrm{loc}}\end{cases}
$$

- same: bi-partite spin fluctuations
- problem: degenerate spectrum!
\Rightarrow use entanglement negativity
data inconclusive

Kitaev: Ground State

- Kitaev chain $H=\sum_{i}-t \sigma_{i}^{x} \sigma_{i+1}^{x}+U \sigma_{i}^{z} \sigma_{i+1}^{z}-\frac{1}{2} \mu_{i} \sigma_{i}^{z}$
- topological if $|\mu|<2 t$ for $U=0$ without disorder
- use variational DMRG to find phase diagram; top. stable for moderate disorder

ground state, disordered system

MBL + topology: what about excited states?

Kitaev: DMRG-X

(a) $\Delta=t, U=0$

(c) $\Delta=t, U=0.5 t$
disorder:
small enough for topology
large enough for MBL

$$
L=24
$$

Kitaev: DMRG-X no intermediate regime!

(a) $\Delta=t, U=0$

(c) $\Delta=t, U=0.5 t$

(a) $U=0.5 t, W=\frac{3}{\sqrt{3}}$

(b) $U=0.5 t, W=\frac{12}{\sqrt{3}}$

Topology \& Disorder

finite T \& disorder: FROZEN bulk excitations

- Kitaev: no "intermediate regime" found
- study toy model
- DMRG-X not suited for degenerate spectra. symmetries?!
- ED phase diagram

DMRG

(CK $+\ldots$, PRB'16)

- MBL: ex. states have low entanglement
- How to find their MPS representation? (Pollmann et al.'16, Yu et al.'17, Lim/Sheng'16)
- most NAIVE approach: GS of $(H-E)^{2}$

